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We introduce the concept of Shannon dimensionalityD as a new way to quantify bipartite entanglement

as measured in an experiment. This is applied to orbital-angular-momentum entanglement of two photons,

using two state analyzers composed of a rotatable angular-sector phase plate that is lens coupled to a

single-mode fiber. We can deduce the value of D directly from the observed two-photon coincidence

fringe. In our experiment, D varies between 2 and 6, depending on the experimental conditions. We

predict how the Shannon dimensionality evolves when the number of angular sectors imprinted in the

phase plate is increased and anticipate that D ’ 50 is experimentally within reach.
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Photons can be entangled in various degrees of freedom.
The most extensively studied variety involves the polariza-
tion degrees of freedom, of which there are inherently two
per photon. In a typical EPR-Bell-type experiment, the
state analyzers are polarizers, and when their relative ori-
entation is scanned, this gives rise to a sinusoidal coinci-
dence fringe [1]. This particular shape is characteristic of
the two-dimensional nature of polarization entanglement.

Recently, much attention has been drawn to bipartite
entanglement involving more than 2 degrees of freedom.
With increasing dimensionality, quantum entanglement
becomes correspondingly richer. High-dimensional entan-
glement is predicted to violate locality more strongly and
to show more resilience to noise [2,3]. From an applica-
tions perspective, it holds promise for implementing larger
alphabets in quantum information, e.g., quantum cryptog-
raphy [4], and for an increased security against eavesdrop-
ping [5]. High-dimensional entanglement can be studied
employing the frequency-time [6] or position-momentum
degrees of freedom, the latter having been demonstrated
for both the transverse linear [7,8] and orbital-angular-
momentum degrees of freedom [9,10].

It is crucial to have a quantifier of the dimensionality of
entanglement as measured in an experiment [11]. In this
Letter, we introduce such a quantifier, using concepts from
classical information theory in the spirit of Shannon [12].
We apply these ideas to orbital-angular-momentum entan-
glement, inserting appropriate angular state analyzers in
the beam lines of a parametric down-conversion setup. We
have realized a Shannon dimensionality 2 � D � 6, and
we argue that D ’ 50 is within reach.

In classical information theory [12], the number of
independent communication channels of a signal is known
as the Shannon number. The signal being the state of a
physical system, the Shannon number is also referred to as
the number of degrees of freedom, or the number of modes,
of that system [13,14]. For example, a signal encoded in
the polarization degrees of freedom of a light beam has a
Shannon number equal to 2.

When dealing with a bipartite quantum system in an
entangled pure state j i 2 KA ¼ KA �KB, the usual
measure of the effective dimensionality of the Hilbert
space in which the state lives is given by the Schmidt
number K [15]:

K ¼ 1

TrAð�2
AÞ

¼ 1

TrBð�2
BÞ
: (1)

Here �A ¼ TrBðj ih jÞ and �B ¼ TrAðj ih jÞ are the re-
duced density matrices representing the states of the two
subsystems A 2 KA and B 2 KB, respectively. Although
a system may have infinitely many degrees of freedom, any
actual measurement apparatus has effective access only to
a finite number of them, say,D. Such a dimensionalityD is
referred to as the Shannon number of the measurement
apparatus.
Consider an experiment measuring correlations between

the two subsystems A and B. There are two measuring
apparatuses, say, P Að�Þ and P Bð�Þ, interacting with sub-
systems A and B, respectively, where � and � label pos-
sible settings of the two apparatuses. For a given setting
� 2 f�;�g, detector P Xð�Þ is represented by the projec-

tion operator �̂ð�Þ ¼ jXð�ÞihXð�Þj, where X 2 fA; Bg and
jXð�Þi is the state in which the system X is left after
measurement.
If a von Neumann-type projective measurement is per-

formed, the set of states fjXð�Þig� obtained by varying � is

complete and orthonormal, namely,

hXð�ÞjXð�0Þi ¼ ���0 ;
X
�

�̂ð�Þ ¼ 1̂; (2)

where the measurement operators �̂ð�Þ are Hermitian and
idempotent. The number of these operators is equal to the
dimension of the Hilbert space of the measured quantum
system [16]. However, in many situations nonorthogonal
measurements are made, and Eqs. (2) do not hold [17]. In

this case, the number of projection operators �̂ð�Þ does not
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give the dimension of the Hilbert space of the measured
system, and a new criterion must be introduced.

Let us therefore consider finite-dimensional systems,
say, dimðKXÞ ¼ L, and rewrite Eqs. (2) for the case of
nonorthogonal measurements as

hXð�ÞjXð�0Þi ¼ g��0 ;
X
�

�̂ð�Þ ¼ �̂; (3)

where G ¼ ½g��0 � is a matrix of size L� L and �̂ is an

Hermitian operator. The eigenvalues �l of �̂ give the
detector’s ‘‘sensitivity’’ to the corresponding eigenmodes.
In general, a detector will not be equally sensitive to all
eigenmodes, and some �l are substantially larger than
others. The effective dimensionality D � L of the Hilbert
space D where the measured system lives can be quanti-
fied as the Hilbert-Schmidt norm of the eigenvalue distri-
bution [18]

D � 1

Trð�̂2Þ ¼
1P
l

�2
l

: (4)

This dimensionality should be interpreted as the effective
Shannon number of information channels [12,13].

The isomorphism of Eqs. (1) and (4) suggests a relation
between the Schmidt number K and the Shannon dimen-
sionality D. The nature of such a relation becomes clear if

one notes that, since the operators �̂ð�Þ are Hermitian and
positive semidefinite, the operator �̂ may be interpreted as
a density matrix acting in KX [19]. Thus, if we think of �̂
as a reduced density matrix of a bipartite system, then K
and D are formally the same. However, it is important to
note that, while K furnishes the dimensionality of the
generated entanglement, D gives the effective dimension-
ality of the spaceD that can potentially be probed, and it is
a property of the projection apparatus only. The dimen-
sionality of the measured entanglement is a joint property
of the generated system and analyzers but simply amounts
to D as long as K � D.

Next, we apply our formal theory to an experiment on
orbital-angular-momentum entanglement of two photons,
in order to illustrate how detector characteristics bound the
measured entanglement to an effective Shannon dimen-
sionality D, while probing a generated state with Schmidt
number K � D (and K � D). Our experimental setup is
depicted in Fig. 1. Pumping a �-barium borate (BBO)
nonlinear crystal with a 150 mW Krþ laser beam at � ¼
413 nm, we produce spatially entangled photons by means
of spontaneous parametric down-conversion. The state that
we generate is of the form j�i ¼ P

l

ffiffiffiffiffi
�l

p jlij � li, where
jli denotes the orbital-angular-momentum eigenmode of

order l: h�jli ¼ expðil�Þ= ffiffiffiffiffiffiffi
2	

p
, with � the azimuthal

angle [20]. Employing type-I collinear phase matching,
we collect the full emission cone, and with the experimen-
tal parameters of our setup (beam half-waist at the position
of the crystal w0 ¼ 250 
m and crystal length 1 mm), we
obtain an azimuthal Schmidt number K ’ 31 [21–23]. The

twin photons are spatially separated by means of a non-
polarizing beam splitter.
Each arm of the setup contains an angular state analyzer,

composed of an angular phase plate that is lens coupled to a
single-mode fiber (see Fig. 1) [24]. The angular phase
plates carry a purely azimuthal variation of the optical
thickness. As in polarization entanglement [1], the phase
plates are rotated around their normals, and the photon
coincidence rate is recorded as a function of their indepen-
dent orientations [10].
The combined detection state of the two angular-phase-

plate analyzers, each acting locally, can be expressed as

jAð�Þi � jBð�Þi ¼
�X

l

ffiffiffiffiffi
�l

p jlieil�
�
A
�
�X

l

ffiffiffiffiffi
�l

p jlieil�
�
B
;

(5)

where � and � denote the orientations of the two phase
plates, respectively [25]. The complex expansion co-
efficients

ffiffiffiffiffi
�l

p
are fixed by the physical profile of the

angular phase plate and obey the normalization conditionP
lj�lj ¼ 1. In general, the detection state constitutes a

nonuniform superposition of orbital-angular-momentum
modes. When the angular phase plates are rotated over �
or �, all modes in the superposition rephase with respect to
each other, yielding a set of detection states of the type
Eq. (3). The effective Shannon dimensionality that is so
probed is given by Eq. (4). It is the average number of
modes captured by an analyzer when its phase plate is
rotated over 360	.
As we have recently shown in Ref. [18], the Shannon

dimensionality is straightforwardly deduced from the
shape of the experimental coincidence curve; it is the
inverse of the area underneath the peak-normalized co-
incidence fringe, obtained when rotating one of the phase
plates.

FIG. 1 (color online). Experimental setup. Orbital-angular-
momentum entangled photons are emitted at 826 nm by a
BBO crystal, cut for type-I collinear phase matching. A thin
GaP wafer serves to eliminate the pump beam. The two-photon
field can be clipped with an aperture. The twin photons are
spatially separated by a beam splitter and imaged on the angular
phase plates (f2 ¼ 4f1 ¼ 40 cm). Just behind the phase plates,
the frequency-degenerate photons are selected by interference
filters (not shown), centered around 826 nm with a 10 nm width.
The phase plates (shown are quarter-sector plates) are oriented at
angles � and �, and photon counts are rendered by a coincidence
circuit.
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In our experiment, we have used angular-sector phase
plates; these have a single arc sector, characterized by the
angle �, whose optical thickness is �=2 greater than that of
the remainder of the plate [24]. The part of the field that
crosses this sector thus flips sign. The phase plates are
manufactured from fused-quartz plane-parallel plates, hav-
ing a wedge angle of 0:2500. They are processed by a
combination of photolithography, wet etching, deposition,
and lift-off, resulting in a well-defined mesa structure, with
a transition region that is typically 20 
m wide. The insets
in Fig. 2 show two such plates: a half-sector plate (� ¼ 	),
consisting of two equal halves that are phase shifted by 	,
and a quarter-sector plate (� ¼ 	=2), having one quadrant
	-phase shifted with respect to the remainder of the plate.

For state analyzers that are equipped with such sector
phase plates, the Shannon dimensionality is given by [18]

Dð�Þ ¼
� ½1� 4 �

	þ 6ð�	Þ2 � 8
3 ð�	Þ3��1; � 2 ½0; 	�;

Dð2	� �Þ; � 2 ½	; 2	�:
(6)

For � ¼ 0 we find the trivial result D ¼ 1; a planar plate

does nothing. For � ¼ 	, i.e., a state analyzer equipped
with a half-sector plate, we arrive at D ¼ 3. For an ana-
lyzer equipped with a quarter-sector plate, we find D ¼ 6.
This is the maximum value for a single angular-sector
phase plate. We note that for our setup indeed K � D.
In the experiment, we scan one angular-sector phase

plate over a 360	 rotation, the other remaining fixed, and
measure the coincidence rate. In terms of Klyshko’s picture
of advanced waves [26], valid when K � D, the resulting
shape of the coincidence curves can be explained in terms
of the mode overlap of the two state analyzers. Figure 2(a)
shows experimental results obtained with two half-sector
plates (� ¼ 	), having a step height of 0:48�. The data
points form a double parabolic fringe, consistent with
theory (solid curve). The maxima at 0	 and 180	 are
sharply peaked. The zeros of the fringe are very deep,
less than 10 counts per 10 seconds. The maximum coinci-
dence rate is of the order of 6:5� 103 per 10 seconds,
compared to 105 single counts. We verified that the coin-
cidence rate depends on the relative orientation between
the two phase plates only, the fringe visibility being>99%
for all cases studied. This basis independence is the key
aspect of quantum entanglement. From the area underneath
the data, we deduce the experimental value D ¼ 3:0. Note
that a parabolic fringe was also reported in Ref. [10],
obtained with noninteger spiral phase plates. We conclude
that also in that case D ¼ 3.
An aperture, positioned inside the telescope, allows us to

control the number of detected modes (see Fig. 1). Because
of the antisymmetric profile of the half-sector plate, the
detection state contains only odd expansion terms [see
Eq. (5)] in a fashion �l ¼ ��l. When the aperture size is
reduced, higher-order orbital-angular-momentum modes
are cut off so that, eventually, only the modes l ¼ 1 and
l ¼ �1 survive. We then expect a sinusoidal fringe, analo-
gous to two-dimensional polarization entanglement [1]. In
the experiment, we observe that the coincidence curve is
gradually transformed from parabolic to sinusoidal when
the aperture gets smaller. Using an aperture of 600 
m
diameter, we are in an intermediate regime (squares, D ¼
2:1), while using a 400 
m diaphragm yields a curve that
resembles a sine very well (triangles, D ¼ 2:0). The
dashed and dotted curve are theoretical predictions.
To achieve D ¼ 6, we use two quarter-sector plates

(� ¼ 	=2), carrying an edge discontinuity deviating less
than 3% from �=2. The circles in Fig. 2(b) show our
experimental results, revealing a coincidence curve which
is parabolic for j�� �j � 90	 and equal to zero other-
wise, in agreement with theory (solid curve). We find
D ¼ 5:8, in very good agreement with the expected value
of 6 mentioned above.
The maximum value of the Shannon dimensionality that

can be achieved with a phase plate having but a single
sector isD ¼ 6. Can one reach higher values ofD by using
plates with more sectors? To answer this question, we
consider plates with N sectors that are phase shifted by 	
with respect to interjacent regions. For each choice of

FIG. 2 (color online). Coincidence count rate vs the relative
orientation of the two state analyzers. Points denote experimen-
tal data; curves are theoretical predictions. (a) Half-sector plate.
The parabolic fringe (circles) is a signature of a dimensionality
larger than 2: We findD ¼ 3:0. Truncating the number of modes,
by closing the aperture, gradually reduces the parabola into a
sine of dimensionality 2.0 (triangles). (b) Quarter-sector plate.
The piecewise parabolic fringe yields an experimental dimen-
sionality of 5.8 (circles), where theory predicts D ¼ 6.
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sector angles, we calculate the expansion coefficients
f ffiffiffiffiffi
�l

p g and, subsequently, D [see Eqs. (4) and (5)]. Next,

we maximize D by adjusting the sector angles using a
Monte Carlo random-search algorithm. The result is plot-
ted in Fig. 3, showing a graph of the maximum value of D
versus the number of mesas N. For 10 such sectors, we find
D ¼ 49:9. The insets show the optimal phase plates for
N ¼ 1 (quarter-sector plate), N ¼ 2, and N ¼ 3.

In conclusion, we have introduced the effective Shannon
dimensionality as a novel quantifier of entanglement as
measured in an actual experiment. We have demonstrated
its significance to the case of two-photon orbital-angular-
momentum entanglement. Using angular-sector phase
plates, we have achieved Shannon dimensionalities up to
D ¼ 6. We anticipate that it is feasible to probe dimen-
sionalities as high as 50, using multisector phase plates.
These can be manufactured by means of photo- or e-beam
lithography as in diffractive-optics technology. Alterna-
tively, the use of adaptive optical devices, such as spatial
light modulators or micromirror arrays, seems promising,
particularly because of their versatility with regard to plate
patterns. However, the ultimate limit to the Shannon di-
mensionality is constrained by the angular Schmidt num-
ber of the source; using periodically poled crystals,
K 
 100 is viable for realistic values of pump-beam waist
and crystal length, without loss of count rates [27].
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FIG. 3 (color online). Maximum dimensionality that can be
accessed with sector phase plates having 2N angular sectors
alternatingly phase shifted by 	. The insets show the optimized
plates for N ¼ 1, N ¼ 2, and N ¼ 3.
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