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We prove that the threshold detection efficiency for a loophole-free Bell experiment using an n-qubit

Greenberger-Horne-Zeilinger state and the correlations appearing in the n-partite Mermin inequality is

n=ð2n� 2Þ. If the detection efficiency is equal to or lower than this value, there are local hidden variable

models that can simulate all the quantum predictions. If the detection efficiency is above this value, there

is no local hidden variable model that can simulate all the quantum predictions.
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Quantum nonlocality is the impossibility of reproducing
the quantum correlations between the results of distant
measurements using local hidden variable (LHV) theories.
This impossibility is shown by either the violation of a Bell
inequality [1] or the impossibility of ascribing predefined
results that simultaneously satisfy several predictions of
quantum mechanics [2]. Although quantum nonlocality is
intimately related to entanglement [3], security of quantum
cryptography [4], and communication complexity [5],
there is as of yet no loophole-free quantum nonlocality
experiment. A particularly important problem is the detec-
tion loophole. It occurs when the imperfect efficiency of
the detectors leaves room for LHV theories in which un-
detected events can occur due to local hidden instructions
rather than to imperfections [6]. An appropriate measure of
the quantum nonlocality of a given quantum state and Bell
inequality is, therefore, the minimum detection efficiency
required for a loophole-free Bell experiment, �crit. It is
defined as the value of the ratio between detected and
emitted particles such that, if � � �crit, there is a LHV
theory reproducing the predictions of quantum mechanics,
but no such LHV theories exist if �> �crit. The value of
�crit is known for some scenarios [7–12], and some general
bounds have been obtained [13]. Curiously, �crit was still
unknown for a very important scenario.

Eighteen years ago, Mermin and others discovered the
first example of a Bell inequality with a violation that
grows exponentially with the number n of particles
[14,15]. Specifically, they show that the n-qubit
Greenberger-Horne-Zeilinger (GHZ) state jGHZni [2] vio-
lates a n-partite Bell inequality by an amount that grows as

2ðn�1Þ=2 [14,15]. If instead of a pure jGHZni we have a
noisy one, VjGHZnihGHZnj þ ð1� VÞ1=2n, then the
minimum value of V required to observe a violation is

Vcrit ¼ 2ð1�nÞ=2. Later, Werner and Wolf proved that the
Mermin inequality is the two-setting correlation Bell in-
equality ‘‘which can be violated by the widest margin in
quantum theory . . . [and] is the only one for which the

maximal violation 2ðn�1Þ=2 is attained’’ [16].

There have been several attempts to obtain �crit for the
Mermin inequality: Braunstein and Mann showed that

�crit � 2ð1�nÞ=2n for n odd, and �crit � 2ð2�nÞ=2n for n
even [17]; Brassard, Broadbent, and Tapp showed that

�crit < 2ð2�nÞ=n [18]; and Larsson proved that �crit ¼ 3=4
for n ¼ 3 [9]. However, no formula was known for arbi-
trary n [19]. In this Letter we prove that �crit ¼ n=ð2n�
2Þ. In addition, we obtain numerically the relation between
�crit and Vcrit for several values of n.
The Mermin inequality is based on the GHZ proof of

Bell’s theorem [2]. It shows the impossibility of assigning
predefined values �1 or 1 to local observables, simulta-
neously satisfying several perfect correlations predicted by
quantum mechanics. The scenario for the GHZ proof is the
following. A system composed of n � 3 particles is ini-
tially prepared in the state jGHZni. Each particle moves
away to a distant space-time region where an observer
measures randomly either Xi or Zi, where X and Z denote
the Pauli matrices�x and�z, and i denotes particle i. Local
measurements on particle i are assumed to be spacelike,
separated from the choices of measurements made on all
other particles.
The n-qubit GHZ state is the unique simultaneous ei-

genstate that satisfies

gijGHZni ¼ jGHZni; for i ¼ 1; . . . ; n; (1)

where

gi ¼ Xi

On
j�i

Zj (2)

are the generators of the stabilizer group of the GHZ state,
defined as the set fsjg2nj¼1 of all products of the generators.

The perfect correlations of the GHZ state are

hGHZnjsjjGHZni ¼ 1; for j ¼ 1; . . . ; 2n: (3)

For n odd, the GHZ proof is as follows. Any LHV theory
assigning predefined values �1 or 1 to Xi and Zi in
agreement with the quantum predictions given by (3)
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must satisfy

sj ¼ 1; for j ¼ 1; . . . ; 2n: (4)

However, if we take into consideration only the 2n�1

predictions (4) involving stabilizing operators sj that are

products of an odd number of generators, and assume
predefined values either �1 or 1, then it so happens that,

at most, only 2n�2 þ 2ðn�3Þ=2 out of these 2n�1 predictions
are satisfied. For the remaining predictions of quantum
mechanics, the corresponding prediction of the LHV
model is the opposite (i.e., sj ¼ �1); the reason for this

behavior will be explained below [see (ii)]. Therefore, this
discrepancy between quantum mechanics and LHV theo-
ries can be reformulated as a violation of a Bell inequality.
Any LHV theory must satisfy the following inequality:

j�nj � 2ðn�1Þ=2; (5)

where the Bell operator

�n ¼ 1

2

�Yn
i¼1

ð1þ giÞ �
Yn
i¼1

ð1� giÞ
�

(6)

is the sum of all stabilizing operators which are products of
an odd number of generators. Inequality (5) is the Mermin
inequality for n odd [14]. On the other hand, the n-qubit
GHZ state satisfies

hGHZnj�njGHZni ¼ 2n�1; (7)

and therefore violates the Mermin inequality (5) by an

amount that grows as 2ðn�1Þ=2 [14]. For n even, the

Mermin inequality is not violated by 2ðn�1Þ=2. The equiva-
lent inequality was found by Ardehali [15]. For an expla-
nation of the Ardehali inequality in terms of stabilizers of
the GHZ state, see [20]. For simplicity’s sake, we will
focus on the Mermin inequality for n odd. Our proof works
similarly for n even when we consider the Ardehali
inequality.

Following [10], we include the detector inefficiency in
the LHV model, so that the model consists of a set of
instructions telling the n particles what to do if X or Z
are measured. For a given particle, the only possible in-
structions are ‘‘give a detection (�1 or 1)’’ or ‘‘do not give
a detection.’’

PðXiÞ is the probability that particle i is detected (giving
either �1 or 1) when Xi is measured. PðXijXjÞ is the

probability that particle i is detected when Xi is measured
if particle j � i is detected when Xj is measured.

PðXijXjZkÞ is the probability that particle i is detected

when Xi is measured if particle j (j � i) is detected
when Xj is measured and particle k (i � k � j � i) is

detected when Zk is measured. Analogously, PðXiZjjZkÞ
is the probability that particle i is detected when Xi is
measured and particle j (j � i) is detected when Zj is

measured if particle k (i � k � j � i) is detected when
Zk is measured.

In our LHV models, measurement results are predefined
and are independent of the measurements on other parti-
cles. In addition, they must satisfy some restrictions dic-
tated by the expected (and testable) behavior of the
detectors and the properties of the n-qubit GHZ state for
the measurements involved in a test of theMermin inequal-
ity. Specifically, the following assumptions lead to the
following restrictions.
(i) All detectors have equal, constant detection effi-

ciency. The efficiency is the same when X or Z are mea-
sured. The detection errors are independent. The detectors
have no dark counts.—From these assumptions it follows
that PðAiÞ ¼ p, 8A 2 fX; Zg and 8i 2 f1; 2; . . . ; ng, and
PðAi; . . . ; BjjCk; . . . ; DlÞ ¼ pr, 8A; . . . ; B; C; . . . ; D 2
fX; Zg and 8 (different) i; . . . ; j; k; . . . ; l 2 f1; 2; . . . ; ng; r
is the number of elements in Ai; . . . ; Bj. That is, the differ-

ent probabilities must be symmetric under particle permu-
tation and under the permutation of Xi and Zi. If p is the
minimum over all possible LHV models, then �crit ¼ p.
(ii) Compatibility with the statistical predictions of

quantum mechanics for the Mermin inequality using the
n-qubit GHZ state.—Each of the terms obtained by ex-
panding (6), e.g., X1Z2Z3; . . . ; Zn, represents an experi-
mental configuration required to test inequality (5). We
will also consider configurations obtained for the previous
ones by selecting measurements on subsets containing an
odd number of particles, e.g., X1Z2Z3. According to the
predictions of quantum mechanics for the n-qubit GHZ
state, in each of these experimental configurations, when
an odd number 3 � q � n of particles are detected, the
corresponding results must satisfy

XiZjZk � � �Zq ¼ ZiXjZk � � �Zq ¼ ZiZjXk � � �Zq ¼ � � �
¼ ZiZjZk � � �Xq ¼ �XiXjXk � � �Xq: (8)

In addition, if q � n, then (8) must equal Zqþ1 . . .Zn.

Therefore, depending on the result,�1 or 1, of the product
Zqþ1 . . .Zn, we can divide the reduced state of the q

particles in two ensembles. For each of these ensembles,
a different GHZ proof applies. If q ¼ n, then (8) must
equal 1. Since these conditions cannot be fulfilled if X
and Z of three or more particles have predefined values
either �1 or 1, then we will conclude that the only hidden
instructions allowed in the LHV model are those in which
X and Z of three different particles have not all of them
predefined values.
The challenge is to obtain the maximum possible detec-

tion efficiency that can be reproduced with LHV models
which satisfy (i) and (ii). Each of these LHV models is
defined on a probability space ð�; �Þ and is made up of
subsets of instructions Ik;l;m � �, each of them character-

ized by three numbers: k is the number of particles for
which both observables (X and Z) are predefined (i.e.,
would give a detection when the observable is measured),
l is the number of particles for which only one of the
observables (X or Z) is predefined, and m ¼ n� l� k is
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the number of particles for which none of the observables
are predefined.

Five lemmas are needed to prove our main result.
Lemma 1.—In order to find the maximum detection

efficiency that can be reproduced with LHV models which
satisfy (i), it suffices to consider LHV models where each
of the subsets Ik;l;m satisfies (i).

Proof.—Suppose we find a LHV model compatible with
a detection efficiency �, such that some of the subsets Ik;l;m
do not satisfy (i). Since the model must satisfy (i), we can
always symmetrize it in all possible ways (by changing Z’s
to X’s, and interchanging the different particles) and con-
sider an average of all these rearrangements. Clearly, this
new model will have the same � and each of the Ik;l;m will

satisfy (i). The new model will satisfy (ii) if and only if the
original model satisfied (ii). j

Therefore, from now on we will only consider models
such that each of the Ik;l;m satisfies (i). Each subset Ik;l;m �
� occurs with probability 0 � �k;l;m � 1.

In order to satisfy (ii), the only subsets of instructions
Ik;l;m allowed in our LHVmodels are those with k ¼ 0, 1, 2.
In addition, the predefined values must satisfy (8), and the
�1 and 1 values must be suitably distributed in order to
reflect the fact that for the GHZ state all of the one qubit
reduced density matrices are maximally mixed. Notice that
these last two conditions are not particularly restrictive and
can be easily satisfied. Therefore, in order to improve the
clarity of the presentation, we will not insist on them
hereafter.

An upper bound on � will follow from probabilistic
considerations on each of the Ik;l;m. We will use the nota-

tion PIk;l;m to refer to the probabilities of detection of the

different variables within the sets Ik;l;m.
Lemma 2.—The value of PI2;n�2;0

ðX1jX2; . . . ; XnÞ (and all

the possible substitutions of Xi by Zi and permutations of
the indices) is n=ð2n� 2Þ.

Proof.—By definition,

PI2;n�2;0
ðX1jX2; . . . ; XnÞ ¼

PI2;n�2;0
ðX1; . . . ; XnÞ

PI2;n�2;0
ðX2; . . . ; XnÞ : (9)

In the subset I2;n�2;0, only ðn2Þ instructions have predefined
values for all the Xi’s. Since the total number of different
instructions in I2;n�2;0 is ðn2Þ2n�2, then

PI2;n�2;0
ðX1; . . . ; XnÞ ¼ 1

2n�2
: (10)

In order to calculate PI2;n�2;0
ðX2; . . . ; XnÞ, we consider the

subset S � I2;n�2;0 where both X1 and Z1 have predefined

values. We also consider the complementary subset

Sc ¼ I2;n�2;0 n S. Clearly, PI2;n�2;0
ðSÞ ¼ ðn�1

1 Þ
ðn2Þ and

PI2;n�2;0
ðScÞ ¼ ðn�2

1 Þ
ðn2Þ . Reasoning in S and Sc as above, we

see that

PI2;n�2;0
ðX2; . . . ;XnÞ¼PI2;n�2;0

ðX2; . . . ;XnjSÞPI2;n�2;0
ðSÞ

þPI2;n�2;0
ðX2; . . . ;XnjScÞPI2;n�2;0

ðScÞ

¼ 1

2n�2

ðn�1
1 Þ
ðn2Þ

þ 1

2n�3

ðn�1
2 Þ
ðn2Þ

¼2n�2

n2n�2
:

(11)

j
Lemma 3.—For every Ik;l;m different than I2;n�2;0,

PIk;l;mðX1jX2; . . . ; XnÞ is either undefined or less than

n=ð2n� 2Þ.
Proof.—If m> 1, PIk;l;mðX1jX2; . . . ; XnÞ is not defined. If

m ¼ 1, PIk;l;mðX1jX2; . . . ; XnÞ ¼ 0; hence, we consider only

the case m ¼ 0. In this case, there are only two subsets to
consider, I1;n�1;0 and I0;n;0.
Reasoning as in the proof of Lemma 2,

PI0;n;0ðX1jX2; . . . ; XnÞ ¼ 1
2 (12)

and

PI1;n�1;0
ðX1jX2; . . . ; XnÞ ¼ n

2n� 1
; (13)

which is always less than n
2n�2 . j

Lemma 4.—For efficiencies higher than � ¼ n=ð2n�
2Þ, there are no LHV models which simultaneously re-
produce all the quantum predictions (8) for q odd and 3 �
q � n.
Proof.—The LHV model must satisfy � ¼ PðX1Þ ¼

PðX1jX2; . . . ; XnÞ. The value of PðX1jX2; . . . ; XnÞ must be
less than or equal to the maximum of the values, where
defined, of PIk;l;mðX1jX2; . . . ; XnÞ for the different subsets

Ik;l;m of the LHV model. According to Lemmas 2 and 3, all

of these values are less than n=ð2n� 2Þ. j
Lemma 5.—For � ¼ n=ð2n� 2Þ, there are LHV models

which simultaneously reproduce all the quantum predic-
tions (8) for q odd and 3 � q � n.
Proof.—We prove it by constructing explicit LHV mod-

els Mnð�Þ ¼ fð�k;l;m; Ik;l;mÞg reproducing the quantum pre-

dictions for a given n and �. Exact LHV models for n ¼ 3,
4, 5 for � ¼ n=ð2n� 2Þ are the following:

M3

�
3

4

�
¼

��
54

64
; I2;1;0

�
;

�
9

64
; I1;0;2

�
;

�
1

64
; I0;0;3

��
; (14)

M4

�
2

3

�
¼
��
64

81
;I2;2;0

�
;

�
8

81
;I2;0;2

�
;

�
8

81
;I1;0;3

�
;

�
1

81
;I0;0;4

��
;

(15)

M5

�
5

8

�
¼

��
25 000

215
; I2;3;0

�
;

�
3750

215
; I2;1;2

�
;

�
1750

215
; I2;0;3

�
;

�
2025

215
; I1;0;4

�
;

�
243

215
; I0;0;5

��
; (16)
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where, e.g., ð5464 ; I2;1;0Þ means that the model has instruc-
tions I2;1;0 with probability 54

64 , etc. For higher n, we have
obtained LHVmodels for � ¼ n=ð2n� 2Þ numerically for
up to n ¼ 15 qubits. For a given n and � ¼ n=ð2n� 2Þ,
the LHV models are not unique.

In addition, we have calculated numerically the maxi-
mum background noise [8,12] as a function of the mini-
mum detection efficiency required to violate the Mermin
inequality. The results, for up to n ¼ 8 qubits, are summa-
rized in Fig. 1.

We have proven that a loophole-free Bell experiment
using an n-qubit GHZ state and the correlations appearing
in the n-partite Mermin inequality requires a detection
efficiency higher than n=ð2n� 2Þ. This result solves a
long-standing open problem and is specially relevant for
the 4-qubit [21], 5-qubit [22], and 6-qubit GHZ states [23]
prepared in recent experiments. n=ð2n� 2Þ is the threshold
efficiency beyond which there is no LHV model which
simultaneously satisfies all the quantum predictions (8) and
is the critical efficiency beyond which there is no LHV
model reproducing all the quantum predictions for all the
Bell inequalities, with two settings for q observers (3 �
q � n) and one setting for the other n� q observers,
contained in the Mermin inequality. This observation is
of practical interest since, e.g., testing each of the ð35Þ 2-2-2-
1-1-setting Bell inequalities on a 5-qubit GHZ state re-
quires only 3 spacelike separated regions, while testing the
5-partite Mermin inequality requires 5 spacelike separated
regions. When n tends to infinity, �crit tends to 1=2, reflect-

ing the fact that I0;n;0 is a trivial LHV model compatible

with the quantum predictions if � � 1=2.
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η

FIG. 1 (color online). Maximum (background) noise 1� V
as a function of the minimum detection efficiency � re
quired to violate the Mermin inequality, when the state is
VjGHZnihGHZnj þ ð1� VÞ1=2n, for n ¼ 3; 4; . . . ; 8 qubits.
Note that if V ¼ 1, then � ¼ n=ð2n� 2Þ, and if � ¼ 1, then
V ¼ 2ð1�nÞ=2.
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