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DNA inversion is an important mechanism by which bacteria and bacteriophage switch reversibly

between phenotypic states. In such switches, the orientation of a short DNA element is flipped by a site-

specific recombinase enzyme. We propose a simple model for a DNA-inversion switch in which

recombinase production is dependent on the switch state (orientational control). Our model is inspired

by the fim switch in E. coli. We present an exact analytical solution of the chemical master equation for the

model switch, as well as stochastic simulations. Orientational control causes the switch to deviate from

Poissonian behavior: the distribution of times in the on state shows a peak and successive flip times are

correlated.

DOI: 10.1103/PhysRevLett.101.118104 PACS numbers: 87.18.Cf, 82.39.�k, 87.16.Yc

Reversible and heritable stochastic switching between
two different states of gene expression is a common phe-
nomenon among bacteria and bacteriophage, known as
phase variation. Phase variation is often linked to patho-
genesis, and may help bacteria survive fluctuating environ-
mental conditions (e.g., a host immune system) [1]. An
important molecular mechanism for phase variation is site-
specific DNA inversion [2]. Here, a short piece of DNA
(the ‘‘invertible element’’) is excised from the genome and
reinserted (strand-by-strand) in the opposite orientation by
a site-specific recombinase enzyme binding to sequences at
the ends of the invertible element. Different states of gene
expression correspond to the two orientations of the inver-
tible element (‘‘switch states’’). A well-known example is
the fim genetic regulatory system, which controls the pro-
duction of type 1 fimbriae in E. coli. These fimbriae are
important in uropathogenesis [3]. In the fim system, the
FimE recombinase is produced more strongly when the
switch is in the on state than in the off state [4,5]. This
phenomenon is known as orientational control.

In this Letter, we present a simple and general stochastic
model for a DNA inversion switch with orientational con-
trol. We solve this model analytically, allowing us to
determine the range of stochastic switching behavior pos-
sible for this type of switch. We find that non-Poissonian
behavior occurs, resulting in a peak in the probability
distribution of time spent in the on state and correlations
between successive flips. Such non-Poissonian behavior
could have important effects on the population dynamics
of switching microbes in changing environments. One key
parameter (the concentration of the recombinase not under
orientational control) controls the degree to which our
model is non-Poissonian; this parameter corresponds to
the main point of environmental regulation for the fim
switch. In contrast, bistable genetic switches such as posi-
tive feedback loops [6] or mutually repressing genes [7,8]
in general show only Poissonian behavior (exponential
waiting time distributions and uncorrelated flips).

The model.—Our model DNA-inversion switch, illus-
trated in Fig. 1, contains three elements: the invertible
DNA element and two types of recombinase enzyme (R1

and R2). The invertible element has two possible orienta-
tions (the ‘‘on’’ and ‘‘off’’ states). These correspond to
alternative patterns of gene expression, leading to different
phenotypic states; however, we model here only the core of
the switch and not its downstream effects. The switch can
be flipped between its two orientations by either of the
recombinases. The concentration of recombinase R2 is
assumed to be fixed, while the production of R1 depends
on the switch state: R1 is produced only in the on state. This
feature of the model constitutes its orientational control
and leads to its non-Poissonian behavior. The model is
represented by the following reaction scheme:

FIG. 1 (color online). (a) Schematic illustration of the model.
(b) A typical simulation trajectory. The solid line represents the
time evolution of the number n of R1-molecules, the shading
denotes the switch position and � indicates the duration of a
period of the switch. Parameter values are k1 ¼ 1, k2 ¼ 100,
kon3 ¼ 0:001, koff3 ¼ 0 kon4 ¼ 0:1, and koff4 ¼ 0:1.
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R1!k1 ; Son!k2 Son þ R1 (1a)

Son þ R1 Ð
kon
3

koff
3

Soff þ R1 Son Ð
kon
4

koff
4

Soff : (1b)

Here, Son and Soff denote the on and off states of the switch.
Reactions (1a) describe the production and decay of re-
combinase R1: R1 is removed from the system with rate
constant k1, and is produced at rate k2 only when the switch
is in the on state. Reactions (1b) describe switch flipping.
This may be catalyzed by R1 with rate constants k

on
3 (on to

off) and koff3 (off to on). We shall mainly consider here the

case koff3 ¼ 0. Recombinase R2 can also catalyse switch

flipping. The concentration of R2 (fixed in our model) is

implicit through a dependence of kon=off4 on the R2

concentration.
We note that mean-field, macroscopic rate equations

corresponding to the above reaction scheme yield only
one steady-state solution corresponding to the average
switch state and average concentration of R1. The under-
lying deterministic structure of the model is thus not
bistable. In this sense, our model is fundamentally different
from the bistable reaction networks presented in [6–8].

Our model is inspired by the fim genetic regulatory
system [3]. In analogy with fim, R1 in our model represents
FimE while R2 represents FimB. Environmental stimuli
such as nutrient conditions and temperature act on the fim
switch largely through changes in the level of FimB [9,10];
this would correspond to variation of our key parameters

kon=off4 . However, our model is highly simplified in com-

parison to fim, in that it neglects cooperative and competi-
tive recombinase binding and the effects of other DNA
binding proteins. Our objective in this work is not to model
the details of the fim system, as other authors have done
[9,10], but rather to address general questions about the
behavior of this type of switch. Our model is designed to be
as simple as possible while retaining the key features of
DNA inversion and orientational control; its simplicity
allows us to obtain analytical results and to explore a
wide range of parameter space.

We simulated the reaction scheme (1) using a continuous
time Monte Carlo scheme [11]. A typical trajectory is
shown in Fig. 1, where we plot the number n of R1

molecules and the switch state as functions of time.
When the switch is in the on state, n increases (on average)
towards a plateau value of k2=k1, while in the off state n
decays towards zero. We now obtain an exact analytical
solution for the case where koff3 ¼ 0. This case is relevant to
the fim switch, where FimE catalyses almost exclusively on
to off switching. In the following, all our analytical results
will correspond to koff3 ¼ 0, while simulation results will

be presented also for koff3 > 0. Analytical results for koff3 >
0 will be published elsewhere.

Steady state.—We first consider the statistics of n in the
steady state and compute the long time, joint probability
psðnÞ that the switch is in state s and there are n molecules
of R1. The system of birth-death equations for ponðnÞ and

poffðnÞ becomes in the steady state

ðnþ 1Þk1ponðnþ 1Þ þ k2ponðn� 1Þ þ koff4 poffðnÞ
¼ ðnk1 þ k2 þ nkon3 þ kon4 ÞponðnÞ; (2a)

ðnþ 1Þk1poffðnþ 1Þ þ nkon3 ponðnÞ þ kon4 ponðnÞ
¼ ðnk1 þ koff4 ÞpoffðnÞ: (2b)

In order to decouple the above set of equations, we solve
(2a) for poff , then insert the result into (2b) to give a
decoupled equation for pon. Introducing the generating
function GsðzÞ ¼

P
nz

npsðnÞ (where s ¼ fon; offg), the de-
coupled equation for pon reduces to a second order differ-
ential equation for Gon. Defining then a new variable
u � uz ¼ k2z=ðk1 þ kon3 Þ � k1k2=ðk1 þ kon3 Þ2, the latter

equation reads

uG00
onðuÞ þ ða� uÞG0

onðuÞ � bGonðuÞ ¼ 0; (3)

where a ¼ 1þ u1 þ ðkon4 þ koff4 Þ=ðk1 þ kon3 Þ and b ¼ 1þ
koff4 =k1. Expanding the solution as a regular power series
(i.e., GonðuÞ ¼ P

mamu
m), one finds that GonðzÞ ¼

a01F1ðb; a; uÞ, where 1F1 is a confluent hypergeometric
function and a0 is an integration constant which can be
determined with the normalization condition

P
nponðnÞ þ

poffðnÞ ¼ 1 [or equivalently Gonð1Þ þGoffð1Þ ¼ 1]. This
result can be rewritten in terms of the original variable n as

ponðnÞ ¼ a0
ðu1 � u0Þn

n!

ðbÞn
ðaÞn 1F1ðbþ n; aþ n; u0Þ; (4)

where ð�Þn ¼ �ð�þ 1Þ . . . ð�þ n� 1Þ. An expression
for poff can be derived by inserting Eq. (4) into Eq. (2a).
In Fig. 2 we compare the result for pðnÞ ¼ pon þ poff to
simulations, obtaining perfect agreement. Figure 2 also
illustrates the effects of the different time scales for switch

FIG. 2 (color online). Probability distribution for the number n
of R1 molecules, with kon4 ¼ koff4 ¼ k4, for different values of k4.
The symbols show simulation results and the solid lines are the
theoretical predictions. For the case where k4 ¼ 103, the (dotted)
line is a Poisson distribution with parameter ð1þ
kon4 =koff4 Þ�1kon2 =k1. The other parameters are: k1 ¼ 1, kon2 ¼
100, kon3 ¼ 0:001, and koff3 ¼ 0. The insets show the typical

simulation trajectories for each distribution, where the time is
expressed in units of the mean period h�i.
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flipping and production/decay of R1. For small k4, switch
flipping is slow compared to the rate of change of n. In this
case, when the switch is in the on state, the number of
recombinase has time to reach a plateau before the switch
flips off. The on and off switch states are then each asso-
ciated with a different value of n and the distribution pðnÞ
is bimodal. In contrast, when k4 is large, the switch flips
back and forth much more rapidly than recombinase pro-
duction or removal. Then, the fraction of time spent in the
on state is koff4 =ðkoff4 þ kon4 Þ, and pðnÞ tends to the Poisson
distribution expected for a birth-death process with birth
rate kon2 koff4 =ðkoff4 þ kon4 Þ and death rate k1.

Flipping time distributions.—To determine how orienta-
tional control affects switch function, we compute flipping
time distributions. The flipping time T can be defined in
two different ways. In the first scenario, which we call the
switch change ensemble (SCE), we define T as the time
spent in a particular switch state—for example, FSCE

on ðTÞ is
the probability distribution for the time between the mo-
ment the switch enters the on state and the moment it flips
from the on to the off state. In the second scenario, which
we call the steady state ensemble (SSE), we start observing
the cell at a random moment and measure the time interval
between this moment and its next flip into the other state.
FSSE
on ðTÞ and FSSE

off ðTÞ may be relevant to the response of a

population of switching cells to a sudden environmental
change. They also correspond to an experiment where one
measures the time until the next flip, for cells sampled in
the steady state [12]. To compute these distributions, we
define FsðTjn0Þ as the probability that the system begins at
t ¼ 0 in the s state with n0 recombinase and flips for the
first time at T. Note that for koff3 ¼ 0, the off to on flipping

process does not depend on R1 and is governed by k
off
4 ; thus

FoffðTÞ ¼ koff4 expð�koff4 TÞ is independent of n0 (for both
the SCE and the SSE). However, the on to off flipping
rate is n0 dependent, so that we average over the ensemble
of initial states (characterized by the probability WonðnÞ
of having n recombinase at the start of our measurement)
to obtain the flip time distribution FonðTÞ ¼P

n0
Wonðn0ÞFonðTjn0Þ. For the SCE, the initial condition

is taken just after a flip, which implies that WSCE
on ðn0Þ ¼

poffðn0Þ=Goffð1Þ. For the SSE, the initial condition is
sampled in the steady state, yielding WSSE

on ðn0Þ ¼
ponðn0Þ=Gonð1Þ. To compute FonðTÞ, we first define the
survival probability honðn; tÞ that, at time t, the switch is
in the on state with n R1 molecules, without having flipped,
given the initial condition honðn0; 0Þ ¼ Wonðn0Þ. The evo-
lution equation for hon is:

@thonðn; tÞ ¼ ðnþ 1Þk1honðnþ 1; tÞ þ k2honðn� 1; tÞ
� ðnk1 þ k2 þ nkon3 þ kon4 Þhonðn; tÞ: (5)

Defining a generating function ~honðz; tÞ ¼
P

nz
nhonðn; tÞ, it

follows that FonðtÞ ¼ �@t ~honð1; tÞ. Equation (5) reduces to
a partial differential equation for ~honðz; tÞ which has the

initial condition ~honðz; 0Þ ¼
P

n0
Wonðn0Þzn0 . Its solution is

~honðz; tÞ ¼ e�tðkon
4
þk2ð1�k1�onÞÞek2�onðz�k1�onÞð1�e�t=�on Þ

� ~honðk1�on þ e�t=�onðz� k1�Þ; 0Þ; (6)

where �on ¼ ðk1 þ kon3 Þ�1:FonðTÞ can then be computed

for the different measurement scenarios using ~honðx; 0Þ ¼
GsðxÞ=Gsð1Þ with s ¼ off for SCE and s ¼ on for SSE.
Peak in the distribution.—Our results, illustrated in

Fig. 3, show a striking effect of orientational control for
this model switch: for the SCE, we can obtain a peak in the
flipping time distribution. Such a peak has been postulated
for the fim switch [9], where it might imply that the switch
tends not to leave the on state before it has had time to
synthesize fimbriae [3,9,10]. Time spent in the on state
may also influence recognition by the host immune system.
This peak in FSCE

on is a consequence of the feedback be-
tween the switch state and the level of R1. Once in the on
state, the rate of on to off flipping increases with time as R1

is produced. In contrast, for a Poissonian switch, the rate of
flipping is constant in time. For a peak to occur, the slope of
FSCE
on at the origin must be positive, which implies

k2 � ðkon4 Þ2=kon3 � ðk1 þ 2kon4 Þhn0i � kon3 hn20i> 0; (7)

where h. . .i denotes an average using the weight Won. The
l.h.s. of (7) can be evaluated numerically using the exact
result (4) to compute hn0i and hn20i. We can then determine

the regions of parameter space where a peak exists, as
shown in the shaded region of Fig. 3 for the SCE. Our
results show that the presence of a peak is favored by large
values of k2 (strong production of R1 in the on state), and
suppressed by very large values of kon3 (strong R1-mediated

on to off switching) or by very small values of kon3 (switch-

ing dominated by R1-independent mechanism). Likewise,
when k4 is increased, the range of values over which the
peak exists is decreased, since R1-independent Poissonian

FIG. 3 (color online). Occurrence of a peak in the flipping time
distribution FSCE

on ðTÞ, for k4 ¼ 0:1. In the shaded region the peak
is present, and it vanishes outside this region. The dashed line
shows the same result for k4 ¼ 0:25. As k4 increases, the range
of parameters for which there is a peak decreases. The unit of
time is set by k1 (i.e., k1 ¼ 1). The insets show examples of
FSCE
on ðTÞ (solid lines) and FSSE

on ðTÞ (dotted lines). In the left inset,
for ðk2; kon3 ; k4Þ ¼ ð0:2; 4; 0:1Þ, FSCE

on ðTÞ is peaked, while in the

right inset, for (5,1,0.1), FSCE
on ðTÞ shows no peak.
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switching tends to dominate. For the SSE, on the other
hand, we did not find any parameter values where inequal-
ity (7) is verified. The peak in the SCE appears because the
number of recombinase, and hence the flipping probability,
is typically low immediately after entering the on state and
increases significantly thereafter. In contrast, in the SSE
one typically starts a measurement when n, and hence the
flipping probability, is already high. This tends to suppress
the peak in the SSE flipping time distribution.

Correlated flips.—Another potentially important effect
of the feedback between the switch state and the produc-
tion of recombinase R1 may be to cause correlations in the
waiting times between successive flips (for example, a
particularly short time before a flip might lead to subse-
quent flips occurring in quick succession). Such correla-
tions might allow a population of switching microbes to
‘‘remember’’ the history of past environmental changes.
We define the switch period �i as the time from when the
switch enters the on state from the off state for the ith time,
until it enters the on state for the (iþ 1)th time—i.e., the
switch period is the duration of the on state plus the
subsequent off state (cf. Fig. 1). In Fig. 4, we plot simula-
tion results for the correlation function for switch periods
�i and �j, as a function of j� i, as measured in simula-

tions. For koff3 ¼ 0, weak correlation is observed between

subsequent periods �i and �iþ1. Correlations are weak
because when koff3 ¼ 0, the off to on switching process

does not depend on R1 and is an uncorrelated Poisson
process. When koff3 � 0, correlations are much stronger

and extended correlated sequences of flips emerge.
Discussion.—We have presented a generic model for a

DNA-inversion switch with orientational control. By solv-
ing the model analytically in the case koff3 ¼ 0 (relevant to

the fim switch), and using stochastic simulations, we have
shown that this type of switch can display markedly non-
Poissonian behavior, including a peaked flipping time dis-
tribution for intermediate values of kon3 and, for koff3 > 0,
correlated sequences of flips. Non-Poissonian behavior has
been postulated to be a consequence of orientational con-
trol [3,9]. The model presented here allows us to analyze

the origins and effects of this behavior in detail, and
provides analytical results which can be used as a basis
for more complex models [13]. Suggested evolutionary
roles for orientational control include rapid response to
environmental change [10], as well as peaked flipping
time distributions [3,9]. This study raises interesting ques-
tions about the consequences of non-Poissonian switching
for population dynamics in changing environments.
Several models have been proposed for the growth of
populations of switching cells in stochastically and peri-
odically changing environments (see, for example, [14]).
These models assume Poissonian switch flipping. The
analytical solutions presented here should make it possible
to extend such models to the case of non-Poissonian flips.
Non-Poissonian switch flipping opens up the possibility
that lineages of cells may ‘‘remember’’ (in a statistical
sense) the history of their recent phenotypic states. This
is likely to have important consequences for models which
include selection according to the fitness of different phe-
notypic states in changing environments. We speculate that
bacteria which adopt a non-Poissonian flipping strategy
may be able to maximize the evolutionary advantages of
using some knowledge of the likely future behavior of the
environment, combined with the benefits of a stochastic
strategy as an insurance against sudden and unpredictable
environmental changes. These avenues will be the subject
of future work.
The authors are grateful to A. Adiciptaningrum,

G. Blakely, M. Cates, C. Dorman, A. Free, D. Gally,
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FIG. 4 (color online). Correlation function ½h�i�ji �
h�ii2�=½h�2i i � h�ii2� between switch periods �i and �j, for sev-

eral values of the rate koff3 . These are simulation results for: k1 ¼
1, kon2 ¼ 5, kon3 ¼ 1, kon4 ¼ koff4 ¼ 0:1.
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