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Large Deviations in the Free Energy of Mean-Field Spin Glasses
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We compute analytically the probability distribution of large deviations in the spin-glass free energy for
the Sherrington-Kirkpatrick mean-field model; i.e., we compute the exponentially small probability of
finding a system with intensive free energy smaller than the most likely one. This result is obtained by
computing the average value of the partition function to the power n as a function of n. At zero tem-
perature this absolute prediction displays a remarkable quantitative agreement with the numerical data.
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In the study of disordered systems nearly all predictions
concern the most likely behavior, but there is also consid-
erable interest in developing techniques to compute the
probability distribution of rare events, i.e., the probability
of finding systems that have properties different from the
typical ones. The motivations are various. (i) We may have
special interest in those systems with a behavior different
from the most likely one; for example, in constraint opti-
mization problems, in the region where it is impossible to
satisfy all the constraints in the most likely system, there is
a great interest in computing the properties of those rare
systems where we can find a configuration that satisfies all
the constraints [1]. (ii) The properties of large fluctuations
may be related to other more interesting properties of the
system. For example, given an intensive quantity A; that
depends on the system J of size N, in the large deviation
region for large N we usually have that Py(A) =
exp(—=NL(A)). It is quite common that there are relations
among the behavior of Py(A) in the region where the
probability remains finite when N goes to infinity and the
behavior of L(A) near the point where L(A) = 0. In other
cases [2], the techniques used to compute large deviations
are the same used to compute more mundane quantities
like (in finite dimensional spin glasses) the typical differ-
ence of the energy with periodic and antiperiodic boundary
conditions. Besides, sample-to-sample fluctuations have
been recently shown to be related to chaos in spin glasses
[3]. (iii) We notice also that the comparison between
analytic predictions in the large deviations region and
numerical or experimental data may provide a clear-cut
test of the theoretical approach used to compute the most
likely properties.

Unfortunately even in the simplest nontrivial case, i.e.,
the Sherrington-Kirkpatrick (SK) infinite range model for
spin glasses, there is no consensus on the results of such a
computation. Everybody agrees that as a first step we need
to compute in the large N limit the thermodynamic func-
tion

B(n, B) = - B;—N InZ,(BY", (1)
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where different systems (or samples) are labeled by J,
Z;(B) is the partition function and the bar denotes the
average over different disordered samples. It is well known
that the probability of large deviations is related to the
function ®(n, B). Indeed,

exp(BnN®(n, B)) = Z;(B)" = exp(— nNBf;(B)). (2)

where f is the system-dependent free energy per spin. The
region of positive n corresponds to fluctuations where the
free energy is smaller than the typical one and the region on
negative n corresponds to fluctuations where the free en-
ergy is larger than the typical one.

There is a disagreement in the literature on the strategy
we should follow to compute ®(n, B). In the n — 0 limit
the computation can be done using the broken replica
symmetry ansatz (that is known to give the exact result),
where it coincides with the most likely free energy
®(0, B) = fiyp or, equivalently, with the average equilib-
rium free energy feq = fip-

For n > 0 Kondor [4] in 1983 presented a first compu-
tation of ®(n, B) in the region near T, using the most
natural ansatz for replica symmetry breaking (RSB) ob-
taining in the region of positive n

D(n, B) = fiyp + csn® + O(n°). 3)

However, it has not been possible to test directly Kondor
prediction because at the present moment all numerical
data concern the fluctuations of the ground state energy;
i.e., the system is at zero temperature. Indeed at zero
temperature the free energy coincides with the internal
energy and the numerical data are more clean due to the
absence of thermal noise. The result of Kondor was sur-
prising: in the general case all powers of n are present in
the Taylor expansion of ®(n, 8) and for most of the
systems we have ®(n, B) = fi, + Ajn + O(n?), that is
the typical situation for a Gaussian distribution of the
free energy. The absence of the powers from n'! to n* is
due to cancellations and it was not clear if they were
present only near the critical temperature. This form of
the large deviation function implies that the probability
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distribution for f near (and smaller than) f,, is of the form

PN(f) o CXp( - NaG/S(ftyp - f)G/S), 4)

where ag/s = 5865|7175,

Many efforts has been concentrated on the scaling of the
small deviations of the free energy. Indeed based on
Kondor’s result it was argued in [5] that the small devia-
tions from its mean of the free energy per spin scale as
N~3/%. The function Py(f) is peaked around f,, in the
large N limit and the small deviations correspond to the
region of the peak while the large deviations correspond to
its exponentially small tails. Thus, in principle, small and
large deviations are fairly different objects and it may seem
strange that one can determine the scaling of the peak from
a large deviation calculation. However, if one assumes that
there is a smooth matching between the behavior of the
peak and that of the tails, it follows that the region of the
peak corresponds to values of the free energy difference
such that expression (4) is finite and this leads to (fy, —

f) = O(N~5/%). This prediction has been tested in a series
of numerical works [6—12] and although all estimates are
smaller than 5/6 nobody has claimed that this value is
definitively ruled out. However, it was difficult to test the
theory in the absence of a quantitative prediction (the only
prediction being on the exponent, a quantity that it is rather
difficult to measure in a reliable way). There are results that
strongly indicate that the fluctuations of the internal energy
per spin at finite temperature scale as N~>/°, thus confirm-
ing Kondor’s exponent [13].

More recently, a different RSB ansatz was proposed by
Aspelmeier and Moore [14,15], who found ®(n) = Siyp> In
their approach the probability of large deviations goes to
zero faster than exp( — L(f)N) and the above matching
argument cannot be used to infer the small deviations
exponent. Indeed there is a general agreement that for
negative n ®(n) = f,,, and Py(f) goes to zero faster
than exp(—CN) as soon f > f... It is quite possible that
in that region we have Py(f) « exp(— N2L,(f)) with
some unknown function L,(f) as it happens in the spheri-
cal model [16]; however, an analysis of this point goes
beyond the aim of this Letter.

In the following we concentrate on large deviations in
the region f < fiy,, that corresponds to positive n. We
follow Kondor’s approach and we extend his computation
to all temperatures, including 7 = 0; in this way we obtain
an absolute prediction for the large deviations distribution.
We compare our analytic results with the numerical simu-
lations performed at zero temperature and we find a re-
markable agreement. We also find that the alternative
approach [14,15] that predicts ®(n) = f,y, for both nega-
tive and positive values of n cannot be valid for large
positive n and there are no compelling reasons for which
it should be valid at fixed positive n when N goes to
infinity. This is in agreement with the results coming

from an exact analysis: for positive values of n Talagrand
[17] was able to show rigorously that Kondor’s approach
gives the correct results. The solution to the problem of
computing the large deviations for the SK model at all
temperatures is presented below: eventually we will con-
centrate on the zero-temperature limit.

We start our analysis by defining carefully the large
deviation function for the free energy, L(f), (that we will
call in the following the sample complexity because it is
related to the number of samples with free energy equal to
f) as the logarithm divided by N of the probability density
of finding a sample of size N with free energy per spin f in
the thermodynamic limit [5], i.e.,

log(Py(f))
— N (®)]

L(f) = lim
For large N the majority of the samples has free energy per
spin equal to fy,, and all other values have exponentially
small probability. Consistently L(f) is less or equal than
zero, the equality holding for f = f,y,, i.e., L(fy,) = 0.
For some values of f it is possible that L(f) = —oo, signal-
ing that the probability of large deviations goes to zero
faster than exponentially with N.
It is evident that ®(n) is the Legendre transform of L(f):

— Bnd(n) = —pnf + L(f),  fn= % ©)
Equivalently, we have
L) = pnf = proim, =200 )

In the Sherrington-Kirkpatrick model at low tempera-
tures the replica symmetry is spontaneously broken for the
generic system, 1.e., in the n — O limit. One knows that at
high positive values of n, replica symmetry is not broken
[18]. Therefore for positive n one must distinguish two
regions in the 7 — n plane separated by the so called de
Almeida—Thouless (dAT) line; see Fig. 1. In the region
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FIG. 1. The dAT line in the (7, Bn) plane. The value of Bn
diverges in the zero-temperature limit as Bn =+/—21InT7, as a
consequence the function L(Ae) at zero temperature is described
by the RSB solution at any value of Ae.
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above the dAT line, the phase is replica-symmetric, while
replica symmetry is broken below.

In the replica-symmetric (RS) region the order parame-
ter is the overlap g. The corresponding value of the poten-
tial ®(n, g) is given by

1
Bn.q) = (1 =20+ (1= mg) + 5
+o0 dy )
X ln[ ——— ¢~ 0"/20(2 cosh By)".
—o0 A £TT(q

The overlap g can be computed by solving the equation
d®(n, q)/9g = 0. In the (n, T) plane the dAT line is
specified by the condition [19]:

72 — [ dP(y)(1 — tanh? By)2dy, ®)

where P(y) is a normalized probability proportional to
e~ 0%/20) (cosh By)".

On the dAT line the value of n is ngap(T) = 47/3 for
small 7=1—T while ngap(T) vanishes in the zero-
temperature limit as n = T+/—21InT. As a consequences
in the rescaled (7', n 8) plane the dAT line never touches the
T = 0 line and L(e) at T = 0 is always in the RSB phase;
see Fig. 1.

For small n the RS solution is not only unstable but also
inconsistent, indeed near the critical temperature (for 7' <
T,) one finds an unphysical positive value of the sample
complexity. At any finite temperature ®(n) is described by
the RS solution at large values of n. Both above and below
the critical temperature, the behavior of ®(n) for large
values of n is ®(n) = —Bn/4 — In2/(Bn) + O(e 2B").
This leads to L(f) = —f? + In2 + o(1) for large negative
f, (this is the same behavior of the random energy model
[20D.

Below the dAT line we must break the replica symmetry.
An explicit computation shows that the free energy on the
dAT line is smaller than the most likely free energy (fiyp),

in particular, it diverges as —4/—(InT)/2 at low tempera-
tures while for small 7 = T, — T the free energy difference

is feq — faar = 27°/45 + O(7°). Therefore, we must look
for a free energy that shows some dependence on n also
below the dAT line and the one suggested by Kondor is the
most natural one.

We recall that in Kondor’s approach for n < ngat(T) <
1, one introduces a function g(x) defined for n < x < 1
that describes the breaking of replica symmetry in the low-
temperature phase. A functional F,[q] is obtained such
that ®(n) = max,F,[¢]. The function g(x) that maximizes
F,[q] can be found by solving the stationarity equation
8F/8q(x) = 0. This generalizes the standard approach
that is proved to give the correct value of ®(n) in the n —
0 limit.

The form of the free energy functional is the usual one
[19], the only difference being that all functions are defined

in the interval n =< x = 1. Kondor [4] found that near the
critical temperature Eq. (3) holds with ¢5 = —9/5120. For
negative n the saddle point of the F,[g] is the standard g(x)
corresponding to n — 0, thus ®(n) = f,,, for n <0 [21].
Near the critical temperature the corresponding sample
complexity as a function of Af = f — f,, reads

L(f) = —oo for Af >0,
L(f) = =agsIAfI° + OAFI*P) for Af =0,

where, as we have noticed,

SB|05|71/5676/5'

There are many ways in which one can compute the
maximum of F,[g] in a systematic way far away of the
critical temperature. We have followed the strategy dis-
cussed in [22,23]. We have solved the RSB equations and
computed g(n, x) and ®(n) as a series in powers of n and
7= 1—T [22]. The computation showed that at all the
orders considered that the lowest power of n in the expan-
sion of ®(n) is always n° and also that there is no n° term.
The computation has been done up to the order 7'8.

We have verified by an expansion in powers of n at fixed
7 that the first term in ®(n) is of O(n>) at all temperatures
as follows from an analytic argument that for reasons of
space will be reported elsewhere [24]. This result is related
to the behavior of the free energy functional with increas-
ing number of RSB steps [25].

It is interesting to note that from the third order on, all
derivatives of ®(n) (with respect to n, T and both) are
discontinuous on the dAT line; i.e., the transition is third
order, using the old fashioned thermodynamic classifica-
tion. This is the same behavior of the free energy on the
dAT line in the (A, T) plane [26].

When B — oo the sample complexity L(f) goes to a
well-defined limit. Therefore, from Eq. (6) ®(n) at low
temperature should behave as a function of Bn [27] and the
coefficient ¢, of n® in the power series of ®(n) diverges as
B¢ in the zero-temperature limit.

The series in powers of 7 of c¢s (the n® coefficient in
®(n)) can be used to obtain its behavior in the whole low-
temperature phase provided one uses the information that
cs ~ 8> in the zero-temperature limit. Indeed, the series
can be resummed using Padé approximants with estimated
errors not greater that 1% in the whole temperature range.
A similar result can be obtained for c;.

Using the Padé approximants we can safely make an
extrapolation to zero temperature. At 7 = 0 we find

L(Ae) = —1.62(1)|Ae|®5 + 3.1(1)|Ael¥5 + O(Aed/5).
9

Unfortunately, the second term yields a big correction to
the first one and actually we expect the series to be asymp-
totic as is usually the case in this context [22].

In order to bypass this problem and to have a good
control on L(Ae) we have adopted a method introduced

already ag)s =
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FIG. 2 (color online). Comparison between the numerical and
analytical sample complexity at zero temperature, L(Ae) versus
Ae. The numerical (from N = 30 to N = 150) data are those of
Ref. [8].

in [22] to obtain ¢(x, 7) from its series in powers of x and 7.
We have transformed the series of L(Af) in powers of A f
and 7 in a power series of just 7 by setting A f = z(% ™+
%7'7) with z a parameter. The corresponding series in
powers of 7 were resummed for any given z through
Padé approximants obtaining in the low-temperature limit
the curve L(Ae) in parametric form. By resumming the
series of ®(n, 7) as a function of 7 we have been able to
obtain the sample complexity in the whole low-
temperature phase using the technique of Padé approxim-
ants: 18 orders of the Taylor expansion give us a very good
control on the function.

Using this technique we find that, for not too negative
Ae, the zero-temperature result shown in Fig. 2 differs by
less than 1% from the first term of Eq. (9) in this range of
energy differences. We compared the sample complexity
with the numerical data at zero temperature of Ref. [8] as a
function Ae and find a very good agreement. For each N
we have plotted Ly = In(P(Aey)/N>/)/N with Aey =
e — ey (the average energy at size N): we put the N*/°
factor in the definition so that Ly should go to a constant
for Aey = 0. The quantitative agreement of the numerical
with the theory is quite good. A similar good agreement is
asymptotically obtained if we plot the data at fixed energy.

Summarizing, using the standard hierarchical ansatz we
have computed the large deviation function at all tempera-
tures. In this way we have been able to confirm that the
sample complexity L(Af) is proportional to |Af|®/ for
small negative Af, this result strongly suggests that the
sample-to-sample fluctuations are proportional to N~/
We have verified that the numerical data of [8] are in
remarkably good agreement with our absolute prediction.
We believe that our results solve the problem of computing

the large deviations function for negative Af. One could
therefore start to study more difficult problems, like the
large deviation function for positive A f in the SK model.
One could also try to extend our results to other models,
such as Bethe lattices or large dimensional short range
models; work is in progress in these directions [24].

We thank the authors of Ref. [8] for giving us their
numerical data.
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