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We numerically study the spin- 12 antiferromagnetic Heisenberg model on the kagome lattice using the

density-matrix renormalization group method. We find that the ground state is a magnetically disordered

spin liquid, characterized by an exponential decay of spin-spin correlation function in real space and a

magnetic structure factor showing system-size independent peaks at commensurate magnetic wave

vectors. We obtain a spin triplet excitation gap �EðS ¼ 1Þ ¼ 0:055� 0:005 by extrapolation based on

the large size results, and confirm the presence of gapless singlet excitations. The physical nature of such

an exotic spin liquid is also discussed.
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Novel magnetic properties and the possible existence of
exotic spin-liquid states [1] in low-dimensional spin- 12
systems have attracted intensive attention in recent years.
It has been established that spins in the ground state of the
two dimensional (2D) nearest-neighbor Heisenberg anti-
ferromagnet (HAF) model

H ¼ X

hi;ji
Si � Sj;

are still ordered on square [2] and triangular [3,4] lattice
systems. However, spin-liquid states are likely to be found
in some geometrically more frustrated systems [5], like the
kagome lattice, which may be seen as a diluted triangular
lattice (see Fig. 1) with larger geometrical frustration and
lower coordination number than the triangular lattice.
Earlier exact diagonalization (ED) studies [6–8] suggest
that the kagome antiferromagnet has a short-range spin
correlation and a possible finite spin gap �0:05 when the
finite-size results (up to N ¼ 36 sites) are extrapolated to
the thermodynamic limit. Within the spin gap, a large
number of singlet excited states are also identified [8,9].
Recently, algebraic vortex liquid and Dirac spin liquid with
gapless Dirac fermion excitations have been also proposed
[10,11]. Such a Dirac spin-liquid state has a reasonably
good variational energy [11], but the vanishing spin triplet
gap is in contrast to the ED result. While the discrepancy
may be attributed [11] to the uncertainty of the finite-size
effect in the ED, alternatively a finite spin gap can be also
gained in the Dirac spin-liquid state via an instability [12]
towards a valence bond crystal (VBC) state with a broken
translational symmetry. Earlier on, Zeng and Marston [13]
also proposed that the ground state of the kagome HAF
appears to be a VBC state with a 36-site unit cell, which is
supported by the series expansions [14]. So far the precise
nature of the HAF on the kagome lattice in the long-
wavelength and low-energy regime remains unsettled.

Experimentally the newly synthesized Herbertsmithite
ZnCu3ðOHÞ6C12, in which the spin- 12 copper ions form

layered kagome lattices, has brought tremendous excite-
ment to this field. The absence of the magnetic ordering has
been established based on the neutron scattering measure-
ment [15] down to 50 mK, as compared to a relatively high
Curie-Weiss temperature (� 300 K). The magnetic mea-
surements [15–18] also suggest that there is no signature of
a finite spin gap seen in the experiment, which seems
consistent with an algebraic spin liquid, but contrary to a
short-range spin-liquid state with a finite triplet gap.
However, possible impurity spins outside the kagome
layers, caused by substitutions of nonmagnetic Zn sites
with Cu, or the presence of Dzyaloshinsky-Moriya inter-
actions [19], may all play an important role in order to fully
understand the experimental results. While the experimen-
tal situation is still unclear, on the fundamental side, it is
highly desirable to reexamine the issues regarding the
nature of the ground state and low-lying excitations in a
pure spin- 12 HAF model on the kagome lattice.

In this Letter, we present a systematic numerical study
by employing the density-matrix renormalization group
(DMRG) method [20]. We find that the ground state is
indeed a magnetically disordered state, which is charac-

FIG. 1. Sketch of a three-leg kagome lattice with total number
of sites N ¼ 3� N1 � N2 and number of unit cells N1 � N2 ¼
4� 3. Here a1 ¼ ð2; 0Þ and a2 ¼ ð1; ffiffiffi

3
p Þ are two primitive

vectors of the unit cell including three inequivalent sites (e.g.,
1, 2, 3).
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terized by an exponential decay of the equal-time spin-spin
correlation function in real space. The corresponding mag-
netic structure factor shows small peaks at commensurate
momenta, with near constant peak values insensitive to the
size of the system, in sharp contrast to the structure factor
of the magnetic ordered state on a triangular lattice.
Furthermore, we calculate the spin triplet gap, which is
extrapolated to a finite value �EðS ¼ 1Þ ¼ 0:055� 0:005
in the large sample size limit. In this spin-liquid state, there
also exist low-lying singlet excitations, with their gap
approaching zero at the large sample size limit. Our cal-
culations strongly hint that the ground state may be de-
scribed by a resonating valence bond (RVB) spin liquid
with short-range spin and dimer-dimer correlations without
explicitly breaking lattice symmetries.

We consider a kagome lattice with finite length vectors
N1a1 and N2a2 as shown in Fig. 1. Here a1 ¼ ð2; 0Þ and
a2 ¼ ð1; ffiffiffi

3
p Þ are two primitive vectors of the unit cell

which includes three lattice sites on a triangle. The total
number of sites is N ¼ 3� N1 � N2, with the number of
unit cells N1 � N2. We will extend the calculation from
N ¼ 36 (the maximum size for ED) to much larger sizes
with different geometries, up to N ¼ 3� 16� 4 (192
sites), using the DMRG method. To test the performance
of the DMRG method in the 2D spin systems, we have
compared our results with the ED up to N ¼ 36 sites for
various lattices (including triangular, square, and kagome
lattices) and obtained accurate ground state energies with
errors smaller than 0.01%. For the present study, we keep
up to m ¼ 4096 states in the DMRG block for most
systems with more than 24 sweeps to get a converged
result, and the truncation error is of the order or less than
10�5. We make use of the periodic boundary condition to
reduce the finite-size effect for a more reliable extrapola-
tion to the thermodynamic limit.

We first present the DMRG result for a system withN ¼
48 sites (N1 ¼ N2 ¼ 4). In Fig. 2(a), we show the ground
state energy per site E0=N as a function of m—the number
of states kept in each block (the dimension of the
Hilbert space ¼ 4m2). E0=N is extrapolated to
�0:436 63 at the large m limit, and the estimated error at
m ¼ 4096 is about 0.16%. Similarly, the lowest energy per
site E1=N in the total spin S ¼ 1 sector is also shown in
Fig. 2(a). Defining the spin triplet gap �EðS ¼ 1Þ �
E1ðS ¼ 1Þ � E0, such a spin gap starts to saturate at m>
2000 and approaches the value 0.145 at large m as plotted
in the inset of Fig. 2(a). In Fig. 2(b), similar results for a
larger system with N ¼ 108 (3� 12� 3) are also shown,
where we find a slightly larger spin gap at 0.163 for this
larger but narrow system.

A systematic size dependence of the spin gap is shown in
Fig. 3. In the main panel, the spin gap �EðS ¼ 1Þ (solid
squares) vs 1=N is plotted withN ¼ 3� 4� 3, 3� 6� 3,
3� 4� 4, 3� 6� 4, 3� 8� 4, 3� 6� 5 and up to 3�
6� 6 ¼ 108, together with the results of the ED [7] (open

circles) at smaller sizes (note that N ¼ 36 site system in
the ED has a different geometry as compared to the N ¼
3� 4� 3 system in the present calculation). All these data
follow nicely a straight line shown in Fig. 3, which allows
us to extrapolate the spin gap to a finite value �EðS ¼
1Þ ¼ 0:055� 0:005 in the thermodynamic limit. Note that
all the data presented in the main panel are for the systems
close to squarelike with the aspect ratio � ¼ N1=N2 in the
range of 1 � � � 2: The corresponding ground state en-
ergies per site �0 ¼ E0=N and the spin gaps�EðS ¼ 1Þ for
the various system sizes at a given m ¼ 4096 are listed in

FIG. 2 (color online). (a) The ground state energy per site
E0=N (solid circles) and the excitation energy E1=N (solid stars)
in the total spin S ¼ 1 sector are shown as a function of m (the
number of states kept in each block) for the system with N ¼
3� 4� 4; (b) for a system N ¼ 3� 12� 3. The energy gap for
spin-1 excitation �E ¼ E1 � E0 (open circles) as a function of
m for these two systems are shown in the insets.

FIG. 3 (color online). The spin gap �EðS ¼ 1Þ for squarelike
systems (see text) at different system sizes obtained from the ED
[7] (open circles) and DMRG (solid squares) with N ¼ 36–108.
The singlet excitation gap �EðS ¼ 0Þ ¼ E1ðS ¼ 0Þ � E0 is also
given (solid stars). Inset shows the spin gap for both 3-leg and 4-
leg systems.
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Table I. For theN ¼ 3� 6� 6 system, we keep up tom ¼
6000 basis states and find �0 ¼ �0:431 60. For this sys-
tem, �0 as a function ofm extrapolates to �0 ¼ �0:4332 at
m ! 1, which serves as a good estimate of the ground
state energy in the thermodynamic limit [21]. Furthermore,
in the inset of Fig. 3, the spin gap vs 1=N for 3-leg (N ¼
3� N1 � 3) and 4-leg (N ¼ 3� N1 � 4) systems with
N1 ¼ 4–12 (thus including larger �’s) are also present
for comparison. In general, the spin gap of the 4-leg
systems is smaller than that of the 3-leg systems due to
the finite-size effect, consistent with the behavior shown in
the main panel for the more squarelike systems.

Besides the spin triplet gap �EðS ¼ 1Þ, the lowest sin-
glet excitation energy �EðS ¼ 0Þ � E1ðS ¼ 0Þ � E0 is
also shown in the main panel of Fig. 3 (solid stars), whose
magnitude is much smaller than �EðS ¼ 1Þ and ap-
proaches zero with increasing sample size. This is consis-
tent with the ED results [8,9] in smaller systems, in which a
large number of singlet states below the spin gap, growing
with the system size, are identified. In contrast to the finite
spin triplet gap, such vanishing singlet excitation energy
indicates that the low-lying singlet excitations will play a
dominant role in the low-temperature thermodynamic
properties like specific heat.

To describe the magnetic property of the ground state,
the spin-spin correlation function jhSz0Szrij is presented in

Fig. 4 for two systems with N ¼ 3� 10� 3 and 3� 10�
4, respectively. Here r is the distance between the two sites
along the a1 direction in units of the lattice constant and the
error bar denotes the mean square deviation for all the
equivalent pairs of sites. Figure 4 shows that the results
are well fitted by the straight lines representing an expo-
nential fit: jhSz0Szrij ¼ A expð�r=�Þ with � as the spin

correlation length whose size is insensitive to the number
of legs and is about 0:8 lattice spacing for both systems (in
the left lower inset of Fig. 4(b), � as a function of N is
shown for a few systems up to N ¼ 144Þ. These results
clearly illustrate that the ground state is magnetically dis-

ordered with no long-range correlations. Furthermore,
hSz0Szri itself exhibits short-range antiferromagnetic oscil-

lations commensurate with the lattice constant along the a1
direction as shown in the top right inset of Fig. 4.
Completely similar results are found for the transverse
spin-spin correlation hSþi S�j i due to the spin rotational

symmetry.
To further characterize the magnetic correlations,

we present the static structure factor SzðqÞ ¼
1
N

P
ije

iq�ðri�rjÞhSziSzji in Fig. 5(a) for a system size

FIG. 4 (color online). The spin-spin correlations jhSz0Szrij along
the a1 direction with N ¼ 3� 10� 3 and N ¼ 3� 10� 4. The
error bar represents the mean square deviation of all the equiva-
lent sites. The straight line is a fitting to an exponential function
jhSz0Szrij ¼ A expð�r=�Þ. The system size dependence of the

correlation length � is shown in the lower left inset. The spin-
spin correlations hSz0Szri are also given in the insets.

FIG. 5 (color online). (a) The static structure factors SzðqÞ for
the kagome system with N ¼ 3� 6� 6 as a function of (q1, q2)
in units of two primitive basis vectors (b1, b2) in the reciprocal
lattice. (b) The locations of three peaks in SzðqÞ marked by solid
circles in the extended kagome BZ. (c) The peak values Szð1; 1Þ
vs 1=N.

TABLE I. The ground state energy per site �0 and spin gap
�EðS ¼ 1Þ for the squarelike kagome lattice, obtained by the
DMRG with keeping m ¼ 4096 basis states in one block. The
average CPU time for each data point is about two weeks on a
single Intel processor.

N �0 �EðS ¼ 1Þ
3� 4� 3 �0:438 98 0.188

3� 6� 3 �0:438 75 0.164

3� 8� 3 �0:438 67 0.165

3� 10� 3 �0:438 68 0.163

3� 12� 3 �0:438 65 0.163

3� 4� 4 �0:435 91 0.140

3� 6� 4 �0:435 64 0.122

3� 8� 4 �0:435 56 0.112

3� 10� 4 �0:435 52 0.114

3� 6� 6 �0:431 11 0.105
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N ¼ 3� 6� 6, where q are magnetic wave vectors with
components ðq1; q2Þ ¼ ðn1=N1; n2=N2Þ in units of two
primitive basis vectors (b1, b2) in the reciprocal lattice.
We take 0 � q1ðq2Þ � 2 in the extended Brillouin zone
(BZ) for a full description of correlations between spins in
all three sublattices. SzðqÞ exhibits small peaks at q� ¼
ð1; 0Þ, (0, 1), and (1, 1), as illustrated in the Fig. 5(b). Note
that SzðqÞ is not invariant under reciprocal lattice vector
shifts due to 3-sublattice in a unit cell. It is important to
observe that the peaks remain at the same small value
�0:44 without changing much with increasing system
size, as shown in Fig. 5(c). Such weak and size-
independent peaks are in sharp contrast to the structure
factor of a magnetic ordered system in the triangular HAF
model.

Finally, we have also calculated the dimer-dimer corre-
lations hSi � SjSk � Sli � hSi � SjihSk � Sli (j and l are the

nearest neighboring sites of i and k, respectively) with the
corresponding structure factor SDðqÞ shown in Fig. 6.
SDðqÞ does not have sharp peaks, and more importantly
the maximum value of the SDðqÞ is near constant for all
system sizes. These behaviors clearly resemble a spin-
liquid phase and suggest that VBC is not likely to be
realized in such a system. In fact, the overall features of
the spin-spin structure factor in Fig. 5 are quite similar to
those calculated [22] based on the Gutzwiller projected
Dirac spin-liquid state [11], although the spin gap vanishes
in the latter. One may thus conjecture the ground state for
the kagome HAF be described by an RVB state, which is
similar to the projected Dirac spin-liquid state at short
ranges. But at long ranges it will have a finite spin triplet
gap because of the finite size of spin RVB pairing, and the
gapless singlet excitations are Goldstone modes originated
from the broken Uð1Þ gauge symmetry due to the RVB
condensation, like in a charge-neutral superconductor.

In summary, we have numerically studied the ground
state properties and low-lying excitations of the kagome
antiferromagnet using the DMRG method. Our results
provide strong evidence that the ground state is a spin
liquid with only short-range antiferromagnetic correlations
without magnetic order or other translational or rotational
symmetry breaking. The spin triplet excitation has a gap
extrapolated to a finite value in the thermodynamic limit,
but the singlet excitation remains gapless. The nature of
such a spin-liquid state has been discussed based on the
numerical results.
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FIG. 6 (color online). The static structure factor SD for the
dimer-dimer correlation for a system with N ¼ 3� 4� 4 in (a).
The peak value of SD vs 1=N is plotted in (b).
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