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We present a first-principles scheme for the computation of the linear magnetoelectric response of

magnetic insulators. We focus on the lattice-mediated part of the response, which we argue can be

expected to be dominant in materials displaying strong magnetoelectric couplings. We apply our method

to Cr2O3 and show that its low-temperature response has a significant lattice character.
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Magnetoelectric (ME) materials are insulators that allow
control of their magnetic properties by means of external
electric fields [1,2], thus attracting great technological
interest. Current research focuses on obtaining compounds
with a robust ME behavior at ambient conditions. This is
proving to be a major challenge, as progress is hampered
by one fundamental difficulty: the scarcity of ferromag-
netic insulators (not to mention ferromagnetic and ferro-
electric multiferroics [3]) with a high Curie temperature.
An additional problem pertains to the magnitude of the
effect: the ME response is usually very small, reflecting the
weakness of the spin-orbit interactions that are typically
responsible for the coupling.

Quantum calculations based on efficient schemes like
density functional theory (DFT) have proved very useful in
studies of magnetic and ferroelectric materials, and are
expected to facilitate progress on magnetoelectrics.
Indeed, there is a growing number of DFT works tackling
the search for new compounds [4] and even proposing new
coupling mechanisms [5,6]. However, we still lack a first-
principles scheme to compute the ME coupling coeffi-
cients, something that is critical to aid the experimental
work. In this Letter we introduce one such ab initio meth-
odology and demonstrate its utility with an application to
Cr2O3.

Lattice-mediated ME response.—Computing the full
ME response of a material is now possible, as efficient
methods for simulating insulators under external (particu-
larly, electric [7]) fields have recently been developed.
Nevertheless, it seems convenient to look for simplifica-
tions that can both facilitate the calculations and provide
physical insight into the nature of the response.

In a linear magnetoelectric, the magnetization induced
by the application of an electric field E is given by

M jðEÞ ¼
X

i

�ijEi; (1)

where � is the linear ME tensor, i and j label spatial
directions. The magnitude of the ME response is limited
by the magnetic (�m) and dielectric (�d) susceptibilities as
�2
ij < �d

ii�
m
jj [8], which suggests that strong ME couplings

will occur in materials displaying large dielectric and
magnetic responses. On more physical grounds, one can

argue that large ME effects will be associated to significant
electronic hybridizations or orbital rearrangements in-
duced by applied electric fields, as it is processes of that
nature that may lead to a magnetic response via spin-orbit
or exchangestrictive effects. It is then worth noting that (1)
such a response to an electric field is typical of essentially
all highly polarizable compounds used in applications and,
most importantly, (2) such strong dielectric responses are
never a purely electronic effect; rather, they are driven by
the structural changes induced by the applied field. One
can thus conclude that large ME effects will most likely be
based on lattice-mediated mechanisms [9].
Formally, the lattice-mediated contribution to the dielec-

tric susceptibility is defined as �d
latt ¼ �d � �d

elec, where

�d
elec accounts for the purely electronic effect correspond-

ing to clamped atomic positions and lattice parameters.
The ME tensor � can also be decomposed in this way, and
the discussion above suggests that �latt will be the leading
contribution in materials displaying strong ME effects. We
shall thus focus on its computation.
Methodology.—The structural response of an insulator

to a small electric field can be modeled in terms of the
infrared (IR) modes of the material, which are obtained
from the diagonalization of the force-constant matrix at the
� point of the Brillouin zone (BZ). Let us denote by un the
amplitude of the nth IR mode, with n running from 1 to
NIR, and by Cn the corresponding eigenvalue. Taking the
un’s and the applied electric (E) and magnetic (H) fields as
independent variables, we write the energy of a linear ME
crystal around its equilibrium state as

Eðfung;E;HÞ¼E0þ1

2
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�elec;ijEiHj;

(2)

where�0 is the unit cell volume and we have assumed the
crystal has no spontaneous magnetization or polarization
(see the comment on the strain-mediated response below).
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The lattice contributions to the polarization and magneti-
zation are

P latt;i ¼ 1

�0

XNIR

n¼1

pd
niun (3)

and

M latt;j ¼ 1

�0

XNIR

n¼1

pm
njun; (4)

respectively. pd
n is the dielectric polarity of the nth IR

mode, which can be obtained from the atomic Born effec-
tive charges and the mode eigenvector [10]. The pm

n co-
efficients are the magnetic analogue of the dielectric
polarities and, similarly, can be computed from the mode
eigenvector and the knowledge of the magnetizations in-
duced by displacing individual atoms.

The magnetic response to an electric field is readily
obtained from these expressions. Indeed, the equilibrium
value of un for applied E and zero magnetic field is

un ¼ 1

Cn

X

i

pd
niEi; (5)

from which the induced magnetization is obtained as

M j ¼ � 1

�0

@E

@Hj

¼ X
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njun

¼ X

i

�elec;ijEi þ 1

�0

XNIR

n¼1

pm
nj

1

Cn

X

i

pd
niEi: (6)

Then, the mode-decomposed lattice-mediated part of the
linear ME response is given by

�latt;ij ¼
XNIR

n¼1

�latt;nij ¼ 1

�0

XNIR

n¼1

pd
nip

m
nj

Cn

: (7)

This equation encapsulates our method for an ab initio
computation of the ME response. Its most remarkable
feature is that all the parameters that appear in it can be
computed without the need of simulating the material
under applied electric or magnetic fields, which brings
the calculation of ME effects within the scope of the
most widely used DFT codes.

The above expression offers some insight into the micro-
scopic ingredients needed to have a strong lattice-mediated
ME response. In essence, one would like to find materials
in which the response is dominated by a soft mode; ideally,
such a mode should also be highly polarizable and cause a
large magnetic response. It is clear that, in order to have IR
modes with simultaneously large pd

n and pm
n , we need

materials in which the magnetic atoms present large Born
effective charges. While rare, this is the case of compounds
like CaMnO3 [3] (although this particular crystal is not a
linear magnetoelectric).

A few additional comments are in order. (1) The pro-
posed method constitutes a linear-response theory. Note
that Eq. (2) can be extended to include higher-order terms,

thus gaining access to higher-order responses. However,
the computation of such additional terms would typically
require simulations under applied fields. (2) We have not
considered strain (�) contributions to the linear ME re-
sponse, which may be allowed by symmetry in some cases.
Indeed, such contributions always exist in materials dis-
playing a spontaneous polarization or magnetization: In
polar crystals the strain-mediated response arises from
coupling terms of the form �un and �E, which must be
included in Eq. (2); in crystals with a net magnetization,
there will be terms of the form �H. (3) While the above
derivation is made in terms of the eigenvectors of the force-
constant matrix, one could imagine an analogous scheme
using the IR eigenmodes of the dynamical matrix as struc-
tural variables. It would then be possible to model the
dynamical ME response.
Results for Cr2O3.—One would like to demonstrate the

proposed method by studying a material whose response is
dominated by the type of soft-mode mechanism suggested
above. However, partly because of the scarcity of detailed
experimental studies, we were not able to identify any such
model crystal, and decided to work on the linear magneto-
electric compound that is probably best characterized ex-
perimentally: Cr2O3.
The work on magnetoelectrics starts with the prediction

[11] and experimental confirmation [12,13] that linear ME
effects occur in Cr2O3 (chromia). Cr2O3 is an antiferro-
magnetic (AFM) insulator with a 10-atom unit cell and the
magnetic structure sketched in Fig. 1. The magnetic easy
axis lies along the rhombohedral direction c. This crystal
has the magnetic space group R�30c0, and is thus paraelec-
tric. Cr2O3 presents six IR modes: two polarized along the
rhombohedral c axis, corresponding to the A2u irreducible
representation of 3m, and four double-degenerate modes
with Eu symmetry and polarization within the ab plane.
The linear ME tensor is diagonal with two independent
terms: �aa ¼ �bb ¼ �? and �cc ¼ �k. Naturally, the

lattice-mediated part of �? (�k) can be decomposed into

contributions from the Eu (A2u) modes, which we can
compute with our method. (In the following we drop the
‘‘latt’’ subscript from the �’s to alleviate the notation.)
For the calculations we used the LDA [14] approxima-

tion to DFT as implemented in the plane-wave code VASP

[16]. We used the PAW scheme [17] to represent the atomic
cores. Only the nominal valence electrons were explicitly
solved, which we checked is sufficient. Let us just note that
all the trivial calculations involved in this study (e.g., for
the equilibrium atomic structure, force-constant matrix, or
induced polarizations [18]) were performed accurately and
following well-established procedures, and that all of them
were done at the collinear level. To obtain the pm

nj parame-

ters in Eq. (4), we computed the magnetic response upon
condensation of the IR modes by running fully self-
consistent noncollinear simulations including spin-orbit
couplings. Interestingly, we found that a non–self-
consistent approach, as usually employed for the compu-
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tation of magnetic anisotropy energies, renders qualita-
tively incorrect results in this case. Let us also stress that,
given the small magnitude of the energy differences asso-
ciated to the ME effects in Cr2O3, one has to be very
careful with the choice of the parameters controlling the
accuracy of the calculations. In particular, we found it
necessary to use a very demanding stopping criterion for
the self-consistent-field calculations (namely, energies
converged down to 10�10 eV) to obtain, in a computation-
ally robust way, reliable values of the magnetic moments
induced by the condensation of the IR modes. We also
determined that a k-point grid of at least 7� 7� 7 is
needed for accurate BZ integrations. (A magnetic easy
axis in the ab plane is incorrectly predicted if grids that
are not dense enough are used.) The plane-wave cutoff was
found to be less critical; we used 400 eV. We employed the
‘‘LDAþ U’’ scheme of Dudarev et al. [19] for a better
treatment of the 3d electrons of Cr. We choseUeff ¼ 2 eV,
which renders results in acceptable agreement with experi-
ment for the atomic structure, IR phonon frequencies,
electronic band gap, and magnetic moments [20]. At any
rate, we checked the choice of Ueff is not critical, even for
the computation of ME coefficients. Finally, let us note the
orbital degrees of freedom can be expected to be quenched
in Cr2O3; thus, we neglected their contribution to the
magnetization.

Table I and Fig. 1 summarize our results, which present
the following features. (1) We obtain �k much smaller than

�?. Indeed, our calculations indicate that the magnetic

response associated to the A2u modes is nearly zero, and
provide an explanation for such an effect. We find that, for
the Eu modes, the induced in-plane magnetization occurs
via a canting of the Cr spins, as sketched in Fig. 1. In con-
trast, in the case of the A2u modes, no symmetry-allowed
spin canting can induce a magnetization along the c direc-
tion. Instead, the simulations show that the magnetization
originates from a tiny charge transfer between the spin-up
and spin-down Cr sublattices. Probably, the smallness of
the corresponding pm

n coefficients reflects the relatively
large energy cost associated to such a mechanism.
(2) The ME response �? is dominated by the hardest Eu

modes and, interestingly, such a result could have been
anticipated from the mode eigenvectors. More precisely,
the two hardest modes present a relatively large Cr con-
tribution, which should lead to relatively large values of
pm
n , as we indeed find. In addition, in the hardest eigen-

mode the Cr and O sublattices move rigidly and in opposite
directions, which must result in a large pd

n, exactly as
found. (3) We obtain both positive (from three modes)
and negative (from one mode) contributions to �?.
(Given the smallness of the magnetic effects computed,
we have not tried to identify the electronic underpinnings
of having positive or negative �n’s.) This result suggests
that, in a general case, a small static ME effect may be the
result of cancellations between contributions from differ-
ent IR modes. Hence, large static ME effects will most
likely be associated to compounds in which a single IR
mode dominates the response.
To the best of our knowledge, the low-temperature ME

response of Cr2O3 is not totally understood, which reflects
both the difficulties involved in ME measurements and the
rich nature of the problem. The experimental results at
4.2 K are quite scattered [24]: j�?j ranges from 0:2�
10�4 to 4:7� 10�4 in Gaussian units (g.u.) and j�kj
from 0:4� 10�4 to 1:2� 10�4 g:u: There are reasons to
believe that the magnitude of the ME effects was under-
estimated in the early experiments [25], and that the largest
coefficients measured [24,26] are the most reliable ones. In
particular, j�?j probably lies somewhere between 2�
10�4 and 4� 10�4 g:u:, which is remarkably close to
our result. Interestingly, it is not clear how to explain this

TABLE I. Parameters of Eq. (7) computed for the IR modes of
Cr2O3. Modes are divided in two groups, A2u and Eu, according
to their symmetry. The last line shows the results for the two
independent � coefficients, obtained from the addition of the
corresponding mode contributions. The �’s are given in
Gaussian units (g.u.) [23].

A2u modes Eu modes

Cn (eV= �A2) 10.8 25.7 10.4 16.9 21.6 32.5

pd
n (jej) 0.39 8.52 0.65 0.16 3.24 7.14

pm
n (10�2�B= �A) 0.02 0.04 0.41 �2:70 11.32 8.51

�n (10�4 g:u:) 0.00 0.00 0.01 �0:01 0.62 0.68P
n�n (10�4 g:u:) �k ¼ 0:00 �? ¼ 1:30

FIG. 1 (color online). Panel (a): Primitive cell of Cr2O3. Solid
arrows represent the AFM ground state. Dashed arrows sketch
the atomic displacements within the ab plane associated to a
typical Eu IR mode, as well as the induced spin rotations that
render a net magnetic moment. Panel (b): Computed polarization
and magnetization induced by the condensation of the IR modes.
Dashed and solid lines correspond to A2u and Eu modes, re-
spectively. Note that the polarizations and magnetizations asso-
ciated to the Eu (A2u) modes lie within the ab plane (along the c
direction). Note also that the magnetization induced by the A2u

modes is essentially zero.
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relatively large value of �? in terms of the purely elec-
tronic mechanisms typically considered [26–28]. It is thus
worth noting our computed lattice-mediated ME response
is of the same magnitude as the one measured. As for the
parallel response, all the experiments render j�kj< j�?j at
low temperatures, but none reports an essentially zero
value as we obtain. Our results are thus compatible with
the notion that either a purely electronic mechanism, as the
electric-field-induced g shift proposed in Ref. [28], or a
magnetic effect not related to the ME coupling [27] is
responsible for the nonzero �k at low temperatures.

Our calculations of the low-temperature lattice-
mediated ME response of Cr2O3 thus seem to account
for the main part of the effect associated to �? and render
a nearly null �k. Because of the experimental uncertainties

and the approximations involved in our method, it is not
possible to fully validate our results. Nevertheless, it seems
remarkable that our calculations have captured such tiny
ME effects, offering information that will be relevant to
clarify the behavior of Cr2O3.

In summary, we have described an ab initio theory of the
linear lattice-mediated magnetoelectric response. We hope
our work will enable a more effective interaction between
theory and experiment in the search for materials that can
be used in applications.
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