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We investigate the interplay between the quantum coherence and statistics in electrically driven

nanostructures. We obtain an expression for the admittance and the current noise for a driven nano-

capacitor in terms of the Floquet scattering matrix and derive a nonequilibrium fluctuation-dissipation

relation. As an interplay between the quantum phase coherence and the many-body correlation, the

admittance has peak values whenever the noise power shows a step as a function of the nearby gate

voltage. Our theory is demonstrated by calculating the admittance and noise of driven double-quantum

dots.
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Quantum dynamics in a time-dependent potential is an
important topic because of its unrevealed nonequilibrium
phenomena as well as the increasing demand for manipu-
lating coherent electronic states in quantum information
science [1,2]. While the time-dependent potentials in dif-
fusive conductors are known to have a destructive role in
the quantum coherence of electrons, it is not always ob-
vious which role is played on the quantum coherence by
the time-periodic potential in ballistic nanostructures.
Quantum coherence and quantum many-particle statistics
of relevant particles are key concepts in understanding
electron transport properties. For instance, the current
noise, which is basically a two-particle property, contains
the information on the quantum many-particle statistics
[3]. Furthermore, the noise of a coherent conductor in the
presence of a time-periodic external field is known to be
sensitive to the phase of transmission amplitudes [4–6].

In this work, we study how the interplay between the
quantum coherence and the statistics affects the transport
properties in the presence of a time-periodic external po-
tential. We particularly concentrate on the noise of the
quantum displacement current through the driven capaci-
tor, because in usual conductors, shot noise (in the classical
granular nature of electrons) dominates other types of
noises. By this means, we derive the analytic expression
for the admittance and noise formula in terms of the
Floquet scattering matrix for the driven nanocapacitor.

The linear response of the capacitor is described by the
admittance gð!Þ ¼ Ið!Þ=Vð!Þ, which relates the displace-
ment current Ið!Þ to the applied voltage between capacitor
Vð!Þ. The expression which relates equilibrium admit-
tance and the noise power Sð!Þ to the scattering matrix
has been obtained by Büttiker and his co-workers [7,8].
Here we generalize the expression to the case of the
nonequilibrium states generated by a time-periodic poten-
tial of frequency � � !. It will be shown here that, as in
the case of equilibrium capacitors, the admittance of the
driven capacitor can also be understood in terms of the time
delay of electrons near the Fermi level. Meanwhile, the

nonequilibrium current noise power cannot be understood
within a single-particle picture. The noise power shows
step structure as a function of the nearby gate voltage,
which is associated with the opening of temporal channels
in the lead.
Let us begin by introducing a model for the system of a

biased dynamic capacitor (see Fig. 1). A time-dependent
potential with frequency � is applied in a nanostructure
(dotted box) which is connected to a mesoscopic conduc-
tor. The chemical potential of the mesoscopic conductor is
controlled by a nearby gate voltage Vg. The oscillating

nanostructure and the mesoscopic conductor are in a loop
enclosing a time-periodic magnetic flux �ðtÞ. The bias
voltage VðtÞ between the nanostructure and external lead
is induced as an electromotive force along the loop: VðtÞ ¼
d�=dt ¼ Vð!Þei!t þ c:c:.
We assume the mesoscopic conductor is spatially one-

dimensional and the electrons are a noninteracting spin-
polarized gas for simple presentation. Generalization of
our results to the case of multichannel conductors with spin
is straightforward. The Hamiltonian for the conductor
reads

Φ

b

a Ω

FIG. 1. A time-periodic driven nanostructure (dotted box) is
connected to a mesoscopic conductor. For bias voltage, an
external loop driven by slow-varying flux �ðtÞ ¼ �! cos!t is
connected.
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H0 ¼
Z
d��½ayð�Það�Þ þ byð�Þbð�Þ�; (1)

where að�Þ [bð�Þ] is the annihilation operator for the
incoming [outgoing] electron to the driven nanostructure;
fayð�Þ; að�0Þg ¼ fbyð�Þ; bð�0Þg ¼ �ð�� �0Þ and fað�Þ;
að�0Þg ¼ fbð�Þ; bð�0Þg ¼ fað�Þ; bðyÞð�0Þg ¼ 0.

Time-periodic steady states are formed in the conductor
and the driven nanostructure

i@
@

@t
j �ðtÞi ¼ ½H0 þH�ðtÞ þHc�j �ðtÞi; (2)

whereH� is the time-periodic Hamiltonian for the electron
in the driven nanostructure and Hc denotes the coupling
between the lead and the nanostructure. j �ðtÞi is formed
by the incoming electron state of energy � and the linear
combinations of its scattered states with energy �þ n@�.
We assume the external metallic lead is big enough so that
it can be considered as a reservoir in thermal equilibrium.
The occupation number for the incoming electron state of
energy � is given by Fermi-Dirac distribution function
fð�Þ.

Let us consider the linear response of the electric current
to the time-dependent magnetic flux. The perturbing time-

dependent Hamiltonian is H!ðtÞ ¼ �ðtÞÎ, where Î is the
current operator:

Î ¼ e

h

Z
d�d�0½ayð�Það�0Þ � byð�Þbð�0Þ�: (3)

In fact, the above current formula is an approximation
where the current value is taken as the spatial average
value over the length of the conductor L. This approxima-
tion holds when the relevant frequency scale is much
smaller than the Fermi velocity divided by the length of
the conductor L, i.e., !, � � vF=L, so that the relevant
wave number k satisfies jk� kFjL� 1 and kFL� 1
where the rapidly oscillating phase terms are washed out.

The adiabatic turning on of �ðtÞ ¼ �! cos!te0
þt

gradually deforms j �ðtÞi to j��ðtÞi ¼R
d�0C��0 ðtÞj �0 ðtÞi. The coefficients C��0 ðtÞ are deter-

mined by solving the Schrödinger equation for the time-
dependent Hamiltonian HðtÞ ¼ H0 þH�ðtÞ þHc þ
H!ðtÞ. By employing a perturbation expansion of C��0 in

terms of �!, we get the first-order term Cð1Þ
��0 ¼ �!

i@ �R
t
�1 dt

0 cos!t0h �0 ðt0ÞjÎj �ðt0Þi.
Up to the first order of �!, the ! component of the

displacement current Ið1Þ�;! is obtained through

h��ðtÞjÎj��ðtÞi ¼
Z
d�0h �ðtÞjÎj �0 ðtÞiCð1Þ

��0 ðtÞ þ c:c:

� Ið1Þ�;!ei!t þ Ið1Þ�;�!e�i!t: (4)

The Floquet theorem says that the eigenstates j �ðtÞi of
a time-periodic Hamiltonian can be written in terms of

time-independent basis j�ðlÞ
� i as j �ðtÞi ¼ expð�i �

@
tÞ�P1

l¼�1 e
�il�tj�ðlÞ

� i. Using Eqs. (3) and (4), one can relate

Ið1Þ�;! to the Floquet eigenstates j�ðlÞ
� i, which is useful for

further calculations. The thermal-averaged displacement

current is given by Ið!Þ ¼ R
d�fð�ÞIð1Þ�;!, because the in-

coming electrons are from the reservoir in equilibrium.
The admittance is given by the induced displacement

current Ið!Þ divided by the applied voltage Vð!Þ ¼
i!�!=2. After some algebra we find

gð!Þ ¼ 1

i!

X
m

Z
d�d�0

��������
X
l

h�ðlÞ
� jÎj�ðlþmÞ

�0 i
��������

2

� fð�Þ � fð�0Þ
�� �0 � @!�m@�þ i0þ

:

Here j!j< j�j is assumed.
In a quantum conductor with a time-periodic scatterer,

the scattering relation between the incoming electron of
energy � and the outgoing electron of energy �0 is given by
the Floquet scattering matrix [9] SFð�0; �Þ. The Floquet
state in the quantum conductor can be written

j�ðlÞ
� i ¼ ½ayð�Þ�l0 þ slð�Þbyð�þ l@�Þ�j0i; (5)

where slð�Þ ¼ SFð�þ l@�; �Þ. The unitarity of the scat-
tering matrix gives

P
ljslð�Þj2 ¼ 1, and its time-reversal

symmetry gives s�lð�þ l@�Þ ¼ slð�Þ. The current matrix
element in the Floquet basis simply reads

h�ðlÞ
� jÎj�ðlþmÞ

�0 i ¼ e

h
½�l;0�m;0 � s�l ð�Þslþmð�0Þ�: (6)

The real part of the admittance g0ð!Þ is now written
using 1

xþi0þ ¼ P 1
x� i��ðxÞ:

g0ð!Þ¼ e2

2h

X
m

Z
d�

���������m0�
X
l

slþmð�Þs�l ð�þ@!þm@�Þ
��������

2

�fð�Þ�fð�þ@!þm@�Þ
@!

: (7)

The above result is partly confirmed by the fact that if the
high frequency � radiation were not there, then sl / �l;0
and Eq. (7) is equivalent to Eq. (2) in Ref. [7]. It is worth
noting that the admittance is a quantity governed by the
electron near the Fermi level. At low frequency and zero
temperature, the admittance is approximated by

g0ð!Þ � e2

2h
!2½�2dðEFÞ þ �2pðEFÞ�; (8)

where �d is the phase delay time [10] of the electron in the

nanostructure, which is defined as �dð�Þ ¼ �i@Pls
�
l ð�Þ�

dslð�Þ
d� , and �p (relatively smaller than �d for weaker elec-

trical driving) is the nonequilibrium photoassisted phase

delay time defined by �2pð�Þ ¼
P
m�0j@

P
lslþmð��

m@�Þ ds�l ð�Þd� j2.
Now we turn to the (nonsymmetrized) current noise

Sð!Þ defined by

Sð!Þ�ð!þ!0Þ ¼ 1

�

Z
dtdt0ei!tei!0t0 h�ÎðtÞ�Îðt0Þi; (9)
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where �IðtÞ ¼ ^IðtÞ � hÎðtÞi and ÎðtÞ ¼ eiH0t=@Îe�iH0t=@.
Again ! and !0 are assumed low enough that terms of
higher harmonics involving �ð!þ!0 þ n�Þ (jnj> 1)
vanish. Here the average h. . .i means the spatial average
after both quantum mechanical and statistical average over
many-particle states 1

2ðN�1Þ=2
Q
�j
½ayð�jÞ þP

lslð�jÞbyð�j þ
l@�Þ�j0i with thermodynamic weighting factor

e
��P

j
ð�j�EFÞ. The current correlation hÎð!ÞÎð!0Þi is writ-

ten in terms of the incoming and outgoing particle opera-
tors (a, ay, b, and by). The calculation can be easily done
by projecting the total many-particle states into incoming
particle states. In the projected basis, bð�Þ is replaced withP
lslð�Það�þ l@�Þ.
The correlation between the outgoing particles comes

from the exchange correlation among incoming particles.
After some algebra, the nonsymmetrized noise power of
the driven conductor is given by

Sð!Þ ¼ e2

h

X
m

Z
d�

�
���������m;0 �

X
l

s�lþmð�Þslð�þ @!þm@�Þ
��������

2

� fð�Þ½1� fð�þ @!þm@�Þ�: (10)

By keeping only the m ¼ 0 term, we recover the result for
the case of time-independent potential [7].

Equations (7) and (10) are the main results of this work.
One can notice that current noise power Sð!Þ is related to
the admittance g0ð!Þ via

Sð!Þ � Sð�!Þ ¼ 2@!g0ð!Þ: (11)

Lesovik and Loosen [11] have shown that the above
fluctuation-dissipation relation is valid in a nonequilibrium
case where the particle current flows at a small finite bias.

The noise power in Eq. (10) can be divided into two
different parts Sð!Þ ¼ S0ð!Þ þ SPð!Þ. They are the equi-
librium noise S0ð!Þ (m ¼ 0) and the nonequilibrium noise
SP (m � 0). At low frequency and low temperatures, the
nonequilibrium noise SPð!Þ is more important than the
equilibrium noise S0ð!Þ. The equilibrium noise is propor-
tional to !3, and the nonequilibrium noise is proportional
to !2. So there is always a frequency regime where the
nonequilibrium noise SPð!Þ dominates the equilibrium
noise S0ð!Þ at low frequencies.

To demonstrate our theory, we consider electrically
driven double-quantum dots (DQDs) connected to a single
(spatial) channel lead. We employ the Floquet scattering
theory based on the tight-binding approximation to obtain
the Floquet scattering matrix element slð�Þ [12].

In the tight-binding model, the localized states in

the dots and the leads are created by dy1ð2Þ and

cyj (j ¼ �1;�2;�3; . . . ), respectively. The Hamil-

tonian for the lead and the dot-lead coupling are given

by H0 ¼ � V0

2

P
j<�1ðcyjþ1cj þ cyj cjþ1Þ and Hc ¼

��P
2
i¼1ðdyi c�1 þ cy�1diÞ, respectively. V0=2 is the hop-

ping parameter for the leads which controls the kinetic
energy. � is the tunnel coupling between the dots and the
lead. The Hamiltonian for the driven double dots in the
base of localized state is

H�ðtÞ ¼ 1

2

�� eV� cos�t ��0

��0 ��þ eV cos�t

� �
; (12)

where � and �0 are the asymmetry energy and tunnel
splitting energy, respectively, of the double-quantum dot.
The scattering matrix elements slð�Þ are obtained by a
phase-matching method using the incoming state

ayð�Þj0i ¼ ½1= ffiffiffiffiffiffiffiffiffi
vð�Þp �Pje

ik0jcyj j0i and its outgoing states

byð�þ l@�Þj0i ¼ ½1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vð�þ l@�Þp �Pje

�ikljcyj j0i, where

�þ l@� ¼ �V0 coskl and vð�Þ is the group velocity.
We show the admittance of driven double-quantum dots

in Fig. 2(a). It shows peak structure as a function of Fermi
energy. The admittance has peaks when the Fermi energy
matches with the resonant energy levels of the DQD as
well as photon sidebands EF � Er � @�, where Er is the
Floquet eigenvalue of H�ðtÞ. For weak driving, Er is the

energy eigenvalue for DQD Er � � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ�2

0

q
. Why

does it show peaks? The nonzero admittance of a capacitor
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FIG. 2. (a) Admittance of the driven double-quantum dot in a
capacitor as a function of the Fermi energy at zero temperature.
(b) Nonsymmetrized current noise power Sð!Þ for the same
system as a function of the Fermi energy of the external lead.
EF ¼ 0 is the case when the Fermi level matches the center of
the two eigenenergies of the DQD. The parameters in use are
� ¼ 0:16 meV, �0 ¼ 0:3 meV, � ¼ 0:4 meV, � ¼ 60:7 GHz,
and eV� ¼ 0:3 meV, and ! ¼ 4:55 GHz and V0 ¼ 5:1 meV,
respectively.
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is due to the time delay of the electrons at the capacitor.
Since only states near the Fermi level are excited by an
oscillating magnetic flux of low frequency !, the admit-
tance is naturally given by the Fermi level quantity. So the
peak values of the dwell time at a certain Fermi energy give
rise to the peak structure of the admittance as is clear in
Eq. (8). Meanwhile, the role of the driving electric field of
high frequency � is to help the incoming electron at the
Fermi level jump into the resonant levels in double dots via
photon absorption or emission. Whenever the Fermi level
matches with the resonant energy plus an integer multiple
of @�, the electron can dwell in the dots and the admittance
has peaks. This process is depicted in Fig. 3(a).

In Fig. 2(b), we show the noise power as a function of the
Fermi level. The contribution from equilibrium Nyquist
noise is due to electron states near Fermi level. At low

frequency and zero temperature, S0 � e2

4�!
3�2dðEFÞ [7] and

SPð!Þ � e2@
2� !

2
P
m�0

R
d�jPls

�
lþmð�Þ d

d� slð� þ m@�Þj2 �
fð�Þ½1 � fð� þ m@�Þ�. The sharp peaks in Fig. 2(b) are
attributed to the nonzero dwell time at the Fermi levels. In
contrast, we find that the nonequilibrium part of noise
SPð!Þ shows stepwise behavior. Why does it show steps?
The electrons below the Fermi level contribute to the
nonequilibrium noise through photon absorption or emis-
sion. Note that, in contrast to the case of the admittance,
there is no driving probe field of frequency !. Therefore,
the noise power is not necessarily a quantity for the Fermi
level.

The incoming electron states of energy E< EF contrib-
ute to the noise when E� Er is the integer multiple of @�
[Fig. 3(b)]. Since we consider the current noise power Sð!Þ
at low frequency!<�, the outgoing electron states of the
energy other than Eþ @! are not involved in the low
frequency noise. Therefore, the number of pairs of
incoming electrons of energy E and outgoing states of
energy Eþ @! determine the strength of the current noise
[Fig. 3(b)]. As the Fermi level increases, the number of the
pairs increases, which gives rise to the step structure. The
step arises whenever the Fermi level matches the resonant
energy plus an integer multiple of @�.

While there have been experimental works on the elec-
trical noise under ac excitation for diffusive conductors
[13] and tunnel junctions [14,15], so far there has been no
experimental realization of the driven nanostructure tunnel
coupled to a single lead. To study the quantum aspect of the
admittance discussed in this work, the experimental system
by Gabelli et al. [2] seems most relevant to the present
theoretical work where the dc conductance is zero. For
experimental observation of the resonant admittance peaks
predicted in this work, the quantum dot in use in Ref. [2]
should be electrically driven and small enough to ensure
that the dot’s quantized energy spacing is larger than the
temperature energy scale.

In conclusion, we investigate the low frequency admit-
tance and current noise of a nanostructure which is driven
by a high frequency field. A fluctuation-dissipation relation

for the driven system is obtained. The phase delay time
defined through the Floquet scattering matrix is essential to
understand the admittance. The current noise power shows
steps as a function of the Fermi energy when the admit-
tance shows peaks. The fermionic nature of electrons or the
exchange correlation of the incoming electrons is impor-
tant to the step structure of the noise power.
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FIG. 3. Schematic figures explaining the processes involved in
(a) the admittance and (b) the current noise. See the text.
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