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We study phase transition from the Mott insulator to superfluid in a periodic optical lattice. Kibble-

Zurek mechanism predicts buildup of winding number through random walk of BEC phases, with the step

size scaling as a third root of transition rate. We confirm this and demonstrate that this scaling accounts for

the net winding number after the transition.
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Introduction.—In a second order phase transition, the
critical point is characterized by divergences in the corre-
lation length and in the relaxation time. This critical slow-
ing down implies that no matter how slowly a system is
driven through the transition, its evolution cannot be adia-
batic close to the critical point [1]. As a result, the state
after the transition is not perfectly ordered: it is a mosaic of
domains whose size depends on the rate of the transition.
This scenario was first described in the cosmological set-
ting by Kibble [2] who appealed to relativistic causality to
set an upper bound on domain size. The dynamical mecha-
nism that determines domain size in second order phase
transitions was proposed by one of us [1]. It is based on the
universality of critical slowing down, and predicts that

average size of the ordered domains �̂ scales with the

transition time �Q as �̂� �wQ, where w is a combination

of critical exponents. This Kibble-Zurek mechanism
(KZM) for second order thermodynamic phase transitions
was confirmed by numerical simulations [3] and tested by
experiments in liquid crystals [4], superfluid helium 3 [5],
both high-Tc [6] and low-Tc [7] superconductors, and even
in nonequilibrium systems [8]. With the exception of su-
perfluid 4He—where the situation remains unclear [9],
experimental results are consistent with KZM (see [10]
for a review). Spontaneous appearance of vorticity during
Bose-Einstein condensation driven by evaporative cooling
was recently reported [11]. This confirms KZM predictions
[12] and is further elucidated by numerical studies of BEC
formation [13].

Our goal is to study dynamics of a quantum phase
transition in a simple yet nontrivial example that can be
implemented experimentally. Quantum phase transitions
we consider differ qualitatively from finite temperature
transitions. Most importantly, evolution is unitary, so there
is no damping and no thermal fluctuations to initiate sym-
metry breaking. Recent work on the dynamics of quantum
phase transitions is mostly theoretical [14–23], but there is
one possible exception: Reference [24] on the transition in
a spin-1 BEC. Generic outcome of that experiment is a
mosaic of ferromagnetic domains whose origin was attrib-

uted to a sudden quench limit of KZM. This explanation is
supported by theory [25].
Model.—Bose-Hubbard model is a paradigmatic ex-

ample of a nonintegrable quantum critical system. It de-
scribes cold bosonic atoms in an optical lattice [26]. In
dimensionless variables, its Hamiltonian reads

H ¼ �J
XN
s¼1

ðaysþ1as þ h:c:Þ þ 1

2n

XN
i¼1

ays ays asas: (1)

Here, N is the number of lattice sites, and n is an average
number of atoms per site. This model with periodic bound-
ary conditions (which we assume) should be directly ex-
perimentally accessible in a ring-shaped optical lattice
[27]. For an integer n, the transition from theMott insulator
(small J) to the superfluid phase (large J) is located at Jc ’
n�2 [28].
We drive the system through its critical point by a linear

quench with a quench time scale �Q:

JðtÞ ¼ t=�Q: (2)

In an experiment, one can increase Josephson coupling J
by turning off the optical lattice potential as in [26]. The
initial state is the Mott insulator ground state at J ¼ 0,

jn; n; n; . . . ; ni; (3)

with the same atom number at each site. We assume n �
1: This large density limit is accessible experimentally.
Numerical approach.—We replace annihilation opera-

tors as by complex field �s, as �
ffiffiffi
n

p
�s, which is normal-

ized,
P

N
s¼1 j�sj2 ¼ N, and evolves with the time-

dependent Gross-Pitaevskii equation

i
d�s

dt
¼ �Jð�sþ1 þ�s�1 � 2�sÞ þ j�sj2�s: (4)

These approximations are accurate for n ! 1, when the
critical point Jc ’ n�2 ! 0.
In the truncated Wigner method we employ, quantum

expectation values are given by the averages over stochas-
tic realizations of the field �sðtÞ [13,29,30]. For example,
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the correlation function becomes

CR ¼ hays asþRi
n

� ��
s�sþR: (5)

Here, h. . .i means quantum expectation value while the
overline is an average over realizations. All realizations
of �sðtÞ evolve with the same deterministic Gross-
Pitaevskii equation (4), but they start from different ran-
dom initial conditions which come from a probability
distribution depending on an initial quantum state. The
initial Mott state (3) corresponds to initial fields

�sð0Þ ¼ ei�s (6)

with independent random phases �s 2 ½0; 2�Þ: The Mott
state has the same number of n particles at each site [i.e.,
j�sð0Þj ¼ 1], and, hence, indeterminate phases that trans-
late into random �s.

Kibble-Zurek mechanism.—In an optical lattice with
BEC pools that become gradually connected with
Josephson couplings in accord with Eq. (2), it is natural

to rephrase KZM: Rather than seek distance �̂ over which
phase remains more or less the same, we compute size ��s
of a typical phase step between neighboring sites. One

could use it to deduce the size of domains �̂ over which
winding number changes by one, and get the accumulated
phase from square root of circumference of the whole ring

of BEC pools measured in units of �̂, as in [1]. However,
the same result obtains from a random walk between
neighboring sites, with the corresponding step size ��s.
We now compute ��s as a function of �Q.

The Gross-Pitaevski equation (4) can be linearized in
small fluctuations ��s around uniform large background,
�s ¼ 1þ ��s, and ��s can be expanded in Bogoliubov
modes as ��s ¼

P
kðbkukeiks þ b�kv

�
ke

�iksÞ with pseudo-

momentum k. For constant J, we have bkðtÞ ¼ bkð0Þe�i!kt

with !k ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jð1� coskÞ½1þ Jð1� coskÞ�p

and station-
ary Bogoliubov modes uk ¼ �N k½1þ 2Jð1� coskÞ þ
!k�, vk ¼ N k where N k are such that u2k � v2

k ¼ 1. In
the Josephson regime, when J � 1, we have vk � �uk so
that purely imaginary ��s in �s ¼ 1þ ��s is a phase
fluctuation. However, for our random initial conditions (6),
this linearization is justified only for short wavelength
modes of �s, with k � ��, for whom the modes with
longer wavelength are a locally uniform large background.
From now on, we focus on the short wavelength modes
because they determine variance of the nearest-neighbor
��s.

When k � �� and J � 1, then !k � 2
ffiffiffiffiffiffi
2J

p
. Early in

the linear quench (2), this !k is small so that early evolu-
tion of the short wavelength modes is approximately im-
pulse, i.e., their magnitude remains the same as in the

initial Mott state and, consequently, ��2s ’ 1 in this im-

pulse stage. The impulse approximation breaks down at Ĵ
([1]) when the transition rate _!k=!k equals !k,

_! k=!k ’ !k; (7)

and evolution becomes adiabatic. Equation (7) leads to

Ĵ ’ ��2=3
Q (8)

which is consistent with J � 1 when �Q � 1.

The crossover from impulse to adiabatic evolution at Ĵ is
the key ingredient of KZM. In the following adiabatic

evolution after Ĵ, but before J � 1, short wavelength phase

fluctuations scale as ��s � J�1=4 because the mode am-
plitudes jbkj do not change, but uk and vk follow stationary

Bogoliubov modes uk��vk��1
2ð2JÞ1=4. Consequently,

��s has variance scaling as ��2s jJ ’ j��sj2 � J�1=2.

Given the boundary condition at Ĵ that ��2s jĴ ’ 1, phase

fluctuations must shrink as ��2s jJ ’ ��2s jĴðJ=ĴÞ�1=2 ’
��1=3
Q J�1=2 while J � 1.

On the other hand, when J � 1, then stationary modes

uk � 1 and vk � 0 do not depend on J and ��2s does not

depend on J either. This means that ��2s must stabilize
between the regimes of J � 1 and J � 1, i.e., around
J ’ 1 where it takes its final value

��2s jJ�1 � ��2s jJ’1 ’ ��1=3
Q (9)

which scales with a power of w ¼ 1=3.
This variance determines, e.g., the correlator C1 in

K1 ¼ 1� C1 ¼ 1� cos��s ’ ��1=3
Q ; (10)

for �Q � 1. Kinetic hopping energy per particle K1 is

expected to stabilize for J � 1, when the hopping term
dominates over the nonlinearity in Eq. (4) and K1 becomes
an approximate constant of motion, see Fig. 1.
Key ingredients of KZM are confirmed by our simula-

tions: Phase performs a randomwalk that is Markovian to a
good approximation. Moreover—as seen in Fig. 1—its size
is consistent with the above predictions.
Winding number.—Condensate wave function is single-

valued. Therefore, phase accumulated �R after R ¼ N
steps defines integer winding number

WN ¼ 1

2�

XN
s¼1

Argð�sþ1�
�
sÞ; (11)

where Argð. . .Þ 2 ð��;��. A random walk of phase, with
the variance of nearest-neighbor phase differences scaling
as in Eq. (9), gives winding numbers with variance

W2
N ’ N��1=3

Q : (12)

There are two limits where this scaling is bound to fail. For
very fast quenches with �Q � 1, phases are completely

random between neighboring sites, so ��2s ¼ �2=3, and

W2
N ¼ N=12. For quenches so slow that W2

N < 1, the na-
ture of the problem changes, leading to steeper falloff of

W2
N with �Q [7,16]. Between these two limits, the 1

3 -scaling

in Eq. (12) for the winding number is confirmed by our
numerical results in Fig. 2.
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Correlation function.—Constant amplitude and
Gaussian distribution of phase �R after R steps imply

CR ’
Z 1

�1
d�R cos�Rffiffiffiffiffiffiffiffiffiffiffiffiffi

2��2
R

q e��2
R=2�

2
R ¼ e��2

R=2; (13)

where�R is dispersion of�R ¼ P
R
s¼1 Argð�sþ1�

�
sÞwhich

after R ¼ N steps becomes the winding number in

Eq. (11), i.e., WN ¼ �N=2�. For a random walk, �2
R ¼

R��2s , which leads one to expect

CR ’ expð�R��2s=2Þ 	 expð�R=�Þ: (14)

Using Eq. (9), we would expect scaling � ’ �1=3Q .

Numerical simulations confirm exponential correlations,
see Fig. 3, but correlation lengths �measured at J ¼ 10 are
better fitted by � ’ �0:45Q . On the other hand, early on in the

quench, for smaller values of J � 1, correlation length

exhibits � ’ �1=3Q . It seems that intermediate scales are

subject to phase ordering between the freeze-out at Ĵ ’
��2=3
Q and the final J ¼ 10. Similar post-transition phase

ordering was observed in the integrable quantum Ising
chain [21].

On the other hand, winding number continues to scale

with ��1=3
Q , see Fig. 2. It is not too surprising that it is

insensitive to phase ordering: While in our simulations
winding number is not really stable following the freeze-
out, it changes much less frequently than smaller scale
excitations, as its topological nature leads one to expect.

Summary.—We have investigated the process making a
single condensate wave function out of many—N—inde-
pendent BEC pools. We conclude that, in the ring geome-
try, the overall winding number WN (which will set up
persistent current) can be predicted using simple idea of a
random walk in phase between the initially independent
BEC fragments [1]. For very quick quenches, this leads to
saturation atWN ¼ N=12. Slower quenches lead to scaling
of WN with the rate of reconnection that can be inferred
from the Kibble-Zurek mechanism.
Correlation functions also exhibit behavior consistent

with a random walk in phase. Initially, correlations scale
in a way that is directly related to healing length at the
instant when dynamics of the system becomes faster than
the rate of change of its Hamiltonian [1]. However, while
winding number ‘‘remembers’’ this scaling as Josephson
couplings increase, correlations on smaller scales evolve.
In thermodynamic transitions, similar phase ordering asso-
ciated with diffusion is responsible for the post-transition
smoothing of the order parameter structure so that—even-
tually—only topological defects still ‘‘remember’’ initial
state of the system. In our model, evolution is completely
reversible. Therefore, diffusion cannot smooth out small-
scale structures. However, evolution itself appears to re-
distribute energy between the excitations. This may be
regarded as a quantum analogue of phase ordering.

FIG. 2 (color online). Variance of winding number W2
N mea-

sured at J ¼ 10 as a function of �Q for lattice sizes N ¼ 512,

256, 128. Here, point sizes equal error bars. The data points with

�Q > 2 andW2
N > 2 were fitted with the solid lines giving slopes

close to the predicted � 1
3 in Eq. (12). W2

N is shown over a wider

range of �Q to show the saturation for nearly instantaneous

quenches, when �Q < 2, and the crossover to steeper slope

when W2
N < 2. In the inset, we show a rescaled W2

N=N for N ¼
512, 256, 128, 32, 8 to demonstrate that W2

N � N in the KZM

regime of �Q > 2 and W2
N > 2.

FIG. 1 (color online). Kinetic hopping energy K1 ¼ 1� C1 �
1� cos��s � 1

2 ��
2
s as a function of rescaled J=Ĵ for different

�Q is seen in (a). When J � 1, all the plots overlap demonstrat-

ing that Ĵ ¼ ��2=3
Q is the relevant scale for J � 1. Individual

plots depart from this small-J ‘‘common bundle’’ at J ’ 1, or

J=��2=3
Q ’ �2=3Q , when K1 ¼ 1� C1 is expected to stabilize. In

(b), we show KR 	 1� CR at J ¼ 10 as a function of �Q for

R ¼ 1; . . . ; 5. Data points for each R were fitted with lines, their
slopes giving exponents close to the 1

3 -scaling predicted in

Eq. (10) with error bars on their last digits. Size of typical phase

step can be estimated as ��2s ’ KR=R when KR � 1, and al-
ready this rough estimate yields a good approximation of wind-
ing numbers shown in Fig. 2.
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Correlations on intermediate scales change, but (as was
also the case in thermodynamic phase transitions) small-
scale evolution does not affect the topologically protected
winding number WN .

Our model ignores decoherence and damping that are
likely to intervene in the laboratory experiments with, say,
gaseous BECs. It is relatively easy to modify equations and
introduce damping ‘‘by hand.’’ There is however no unique
prescription for it (although one could appeal to presence
of a dilute thermal cloud, as in simple models of BEC
decoherence [31]). In experiments, dissipation and deco-
herence are inevitable. We expect dissipation to affect
small scales, but leave the topologically conserved WN

intact. This is based on a limited number of simulations
we have conducted where different models of dissipation
were tried out. Above all, this is corroborated by the
experiment [11] where sudden reconnection of N ¼ 3 un-
correlated condensates led to relaxation to a condensate
with stable vortices—stable winding number. It is also
consistent with the recent numerical results [32].
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