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A method is proposed for obtaining three simultaneous projections of a target from a single radiation

pulse, which also allows the relative orientation of successive targets to be determined. The method has

application to femtosecond x-ray diffraction, and does not require solution of the phase problem. We show

that the principal axes of a compact charge-density distribution can be obtained from projections of its

autocorrelation function, which is directly accessible in diffraction experiments. The results may have

more general application to time resolved tomographic pump-probe experiments and time-series imaging.
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Unless crystallographic redundancy can be taken advan-
tage of, radiation damage provides a well established limit
to resolution for imaging in biology. X-ray microscopy of
proteins is limited in this way to 10 nm [1]. Since dose
depends on the inverse fourth power of resolution, a severe
penalty attends any attempt to improve resolution beyond
this barrier, which occurs when the required dose needed to
distinguish adjacent image voxels with statistical signifi-
cance exceeds the damage limit at that resolution (voxel
size).

It has been suggested that the development of the free-
electron x-ray laser (FEL) may break this nexus between
dose and resolution [2], if it can provide sufficient photons
for a useful diffraction pattern in a single pulse, which
terminates prior to any of the characteristic times for
damage processes. A continuum of such times, femtosec-
ond for electrons, hundreds of femtoseconds for nuclear
motion, is associated with the various irreversible damage
mechanisms and excitations. Theory suggests that pulses
shorter than the Auger decay time of a few femtoseconds
may terminate before significant disruption of the valence
electron distribution occurs. Experimental evidence, using
a 25 fs pulse of soft (30 nm) x rays, now exists for this
process of ‘‘diffraction-before-destruction’’ at low (90 nm)
[3] and higher periodically averaged [4] resolution. Since
the FEL generates in excess of 1012 fully coherent photons
in such a pulse, the method of diffractive lensless imaging
[5], in which real-space images are reconstructed computa-
tionally from these scattering patterns, would appear to
provide a means of overcoming the radiation damage bar-
rier to high resolution imaging in biology [6]. The shortest
FEL wavelength is currently 7 nm at the Hamburg FLASH
facility. Shorter wavelength FELs are being planned and
constructed at other sites around the world.

The subsequent destruction of the sample following the
initial elastic scattering event, however, has precluded the
possibility of three-dimensional (tomographic) imaging of

unique structures. To overcome this limitation, we suggest
here a means to determine the relative orientation of suc-
cessive targets.
Two possible arrangements are shown in Figs. 1 and 2. In

Fig. 1, a beam splitter and reflecting crystals direct three
orthogonal beams onto a nonperiodic target particle pro-
ducing three far-field diffraction patterns prior to destruc-
tion of the target. All three two-dimensional patterns are
readout after each x-ray pulse, whereupon a new, identical
target such as a biomolecule is inserted in a new
orientation.
We will show that the relative orientation of successive

targets can be determined even if the structure of the target
is unknown.
Following related work by Smilgies on crystals [7], we

propose experimental determination of the principal axes
of the molecule to describe its orientation relative to the
laboratory frame defined by the incident probe beams.
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FIG. 1. Scheme for tomographic femtosecond diffraction,
drawn for only two beams for simplicity. Beam splitter X1 is
set to the dynamical 3-beam diffraction condition. Crystals X2
and X3 operate at the 2-beam dynamical condition. KB1 and
KB2 are focusing optics for the target at B, with area detectors
CCD1 and CCD2.
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Multiple scattering will be neglected, i.e., the first Born
approximation is assumed valid, so that the patterns have
inversion symmetry and the target density is a real
function.

To expose the principle of the method, assume that the
phase problem can be solved by, for example, iterative
methods (see [8] for a review). (We will relax this assump-
tion later.) Then, in the ‘‘flat’’ Ewald sphere approxima-
tion, i.e., at high probe energy, each beam delivers a
projection in real space (along the direction of the corre-
sponding beam) of the scattering strength per unit volume.
The projections will be referred to different (randomly
positioned) origins, and both enantiomorphs (related by
inversion symmetry) will be present with equal likelihood.
However once a particular enantiomorph is chosen for one
projection, the resulting two-dimensional envelope will
constrain the choice of enantiomorph for the other two
projections.

Consider the moments of the mass density �ðrÞ for the
target [9]. The zeroth moment delivers the total mass, the
first moment delivers the center of mass vector, and the
second moment delivers the moment of inertia tensor. By
diagonalizing the latter, the principal axes of the target may
be found and hence its orientation relative to the lab frame.
Taking the center of mass position as the origin, the inertia
tensor is

I ¼
ZZZ

�ðrÞðr2E� rrÞdr; (1)

whereE is the unit tensor and rr is the outer product of the

position vector with itself. As with any symmetric tensor, I
has only six independent elements, real eigenvalues, and
orthogonal eigenvectors corresponding to different
eigenvalues.
Now take �ðrÞ to be the electronic charge density of the

target, whose projections in three orthogonal directions are
provided by the phased data, and which define the x, y, and
z directions specified by unit vectors ei in the lab reference
frame. The six independent elements of this charge density
‘‘inertia’’ tensor then have the form

Izz ¼
ZZ

�zðx; yÞðx2 þ y2Þdxdy

Ixy ¼ �
ZZ

�zðx; yÞxydxdy
(2)

and similarly for Ixx, Iyy, Iyz, and Ixz. Here �� is the

projected density along the � direction. Two of these six
tensor elements can be computed from each of the three
projections, e.g., Izz and Ixy from the projection along the z

axis. Hence the inertia tensor of the target is fully specified
by computing moments and products of inertia from the
three projections. This charge density ‘‘inertia’’ tensor will
differ from that based on mass but serves equally well to
provide a consistent set of principal axes fixed to the
molecule and defining alignment. Being symmetric, this
tensor may be diagonalized by solving the eigenvalue
equations

I �B ¼ bB (3)

for the three eigenvalues b and corresponding eigenvectors
B. These eigenvectors define a new orthogonal coordinate
system e0j in which the three unit vectors lie along the

principal axes of the inertia tensor. Barring degeneracy
among the eigenvalues, the three eigenvectors are unique
to within a sign, and therefore offer a natural means of
specifying the orientation of the target relative to the
incident beam directions (lab frame). With the unit vectors
ei of the lab frame and e0j both known, the angles between

the principal axes of the target and the lab frame can
immediately be computed. Thus the orientation of the
target has not only been defined by introducing the princi-
pal axes of the inertia tensor, but also specified (within
polarity) relative to the lab coordinates.
Clearly, then, to establish the orientation of the particle it

suffices to (i) record three diffraction patterns, one for each
of the three incident beam directions, (ii) invert the dif-
fraction patterns using phase retrieval techniques to yield
three real-space projections of the scattering strength,
(iii) compute the first moment of each projection to obtain
the center of mass position for that projection (iv) compute
the second order moments of each projection (products of
inertia) about the center of mass to obtain one diagonal and
one off-diagonal tensor element, (v) diagonalize the result-
ing tensor to obtain the eigenvectors of the tensor,
(vi) compute the orientation of each beam relative to the

FIG. 2. Two-beam beam splitter with sample shown at P lying
on the exit face of the beam splitter. The source S is focused onto
two area detectors D1 and D2 containing central beam-dump
holes. The two vertical arrows show the direction of the Poynting
vector. Three such orthogonal diffracted beams, rather than the
two shown, are proposed in the text.
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eigenvectors of the target in order to determine the angles
between laboratory and principal axes coordinates. (vii) If
this process is repeated for many successive identical
targets in random orientations, their relative orientations
can be found, and hence a complete three-dimensional
tomographic image can be assembled by standard tomo-
graphic techniques such as filtered backprojection.

We now extend this analysis to show that the principal
axes may be found, even without solving the phase prob-
lem, by working with the autocorrelation of the sample
density

AðrÞ ¼
Z

dr0�ðrþ r0Þ�ðr0Þ: (4)

A typical product of inertia is

IAxy ¼ �
Z

drxyAðrÞ ¼ �
Z

dr0�ðr0Þ
�Z

drxy�ðrþ r0Þ
�

¼
Z

dr0�ðr0Þ½I�xy � x0y0M� ¼ 2MI�xy; (5)

where M ¼ R
dr�ðrÞ, and with use of the parallel axis

theorem to calculate the product of inertia for the shifted
coordinates. Therefore, the principal axes of the autocor-
relation function are the same as the principal axes of the
corresponding density.

Given a ‘‘flat’’ Ewald sphere, the Fourier transform of
each diffraction pattern (intensity) directly provides a pro-
jection of the three-dimensional autocorrelation function
of the density, and the analysis simply requires changing
�ðrÞ to AðrÞ in Eq. (2).

More generally, the moment of inertia can be calculated
from the second derivative of the Fourier transform.
Denoting these by a tilde,

~�ðqÞ ¼
Z

dre�iq�r�ðrÞ;
~AðqÞ ¼ ~�ðqÞ~�ð�qÞ
IAxy ¼ @qx@qy

~AðqÞjq¼0 ¼ @qx@qy ~�ðqÞ~�ð�qÞjq¼0

¼ ~�ð0Þ½2@qx@qy ~�ðqÞ�jq¼0 ¼ 2MI
�
xy (6)

as before. Replacing ~Aðqx; qy; 0Þ (flat Ewald sphere) with

the correct Ewald sphere (finite radius) diffraction pattern,
and taking the incident wave vector k along z,

@qx@qy
~Aðqx; qy;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � q2x � q2y

q
� kÞjqx¼qy¼0

¼ @qx@qy
~Aðqx; qy; 0Þjqx¼qy¼0 (7)

so that the moments of the Fourier transform of the dif-
fracted data still yield the same principal axes.

We have investigated this procedure using detailed nu-
merical simulations based on data in the Protein Database
for GroEL-GroES protein complex (PDB entry 1SVT).
The three-dimensional density was synthesized from the
tabulated atomic coordinates. Figure 3 shows the projected

densities and corresponding projected autocorrelation
functions using the principal axes obtained from Eq. (2).
A second density was then generated in a random orienta-
tion with respect to the first, as shown in Fig. 4. For each of
these orientations the principal axes were determined using
both the densities and the autocorrelation functions, giving
similar results. The rotation matrix needed to rotate from
the first (Fig. 3) to the second (Fig. 4) orientation was
generated from the principal axes. As a result of inversion
symmetry there are four distinct choices of rotation matrix
(corresponding to choices of eigenvector signs) when the
autocorrelation function is used. The correct rotation ma-
trix was obtained by testing each to see which predicted
lines of intensity in diffraction patterns common to two
orientations. (Any two planes in reciprocal space passing
through the origin must intersect along a common line.) In
this way only one rotation matrix will be found to give
consistent results. Numerical trials have found this proce-
dure to be reliable with several different test objects. Our
use of specific common lines should be more robust for
noisy data than common line search methods. (Shneerson

FIG. 3. The three orthogonal projections of the GroEL charge
density (upper) and the corresponding projections of the auto-
correlation function (lower). The bar indicates 10 nm.

FIG. 4. Projections of GroEL density (upper) and autocorrela-
tion function (lower) in a second random orientation.
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et al. [10] have shown that identifications of common lines
in diffraction pattern down to a mean photon count of 10
per pixel enables the determination of their relative orien-
tations without the need to solve the phase problem.)

This treatment easily extends to the case where the
beams from the beam splitter are not orthogonal.
Reciprocal vectors can be defined in the usual way, so
that each pattern lies in the plane of two of these vectors.
The products of inertia may be simply evaluated in terms of
these reciprocal vectors, and finally transformed into the
required lab frame moments.

Two separate experimental implementations of this ap-
proach are suggested in Figs. 1 and 2, each with an incident
beam close to the [111] direction of a diamond beam
splitter crystal, set to simultaneously excite the [022] and
[2�20] reflections. For an x-ray energy close to 7 keV, this
generates three orthogonal beams with Bragg angles of
45�. The Borrmann effect [11] may then be used to pro-
duce three beams of approximately equal intensity for a
crystal thickness of order 1 mm, due to 3-beam multiple
scattering [12–14]. This remarkable effect, in which wave
field components with zero crossings at atom positions
avoid photoelectron production, reduces absorption in the
beam splitter by many orders of magnitude. Crystals X1
and X2 operate at 2-beam dynamical conditions, for which
reflectivities of greater than 90% are possible. For the
arrangement in Fig. 1, the important experimental chal-
lenge is to generate three incident beams that converge
focused onto a micron-sized volume of space at the same
instant in time. ‘‘Diffraction before destruction’’ will re-
quire pulse durations of 10 fs or less, corresponding to a
spatial pulse length of at most 3 �m, a technically chal-
lenging but feasible length scale for experimental realiza-
tion. [Calculations show that 8 keV x-ray pulses reflected
from Si(111) are stretched by about 4 fs [15].]

A monolithic integration of this arrangement may be
possible. The arrangement in Fig. 2, with sample mounted
on the beam splitter, provides isochronal, but unfocused,
optical paths to the sample. This arrangement is better
suited to long exposures of continuous radiation for sta-
tionary samples. We do not provide detailed phase-space
matching calculations here, but note that the beam diver-
gence of one planned FEL, the Linac Coherent Light
Source at Stanford, California, is 1:1� 10�6 rad, which
is less than a typical perfect-crystal rocking curve width of
3:4� 10�5 rad. An energy spread of �E=E ¼ 1:4� 10�4

can be expected after monochromation at 8 kV, with a
beam width of 20 �m. Estimates suggest that even with
less than one scattered photon per pixel, phasing and
reconstruction is possible [10,16,17].

We conclude that a determination of the relative orien-
tation between successive particles of unknown structure
(each initially in a random unknown orientation with re-
spect to the laboratory frame) may be achieved without the
need to solve the phase problem.

For a stream of identical molecules in random orienta-
tions, this would allow data from different molecules to be
merged in the correct relative orientation. After phasing the
resulting three-dimensional reciprocal-space data, a tomo-
graphic image can then be reconstructed. We have also
shown that the orientation of successive objects can be
determined from autocorrelation functions, so that a solu-
tion of the phase problem is not required. The entire
procedure cannot distinguish enantiomorphs. Stereo-
scopic projections might be obtained from just two projec-
tions. We have suggested experimental implementations
for this method for femtosecond x-ray diffraction. This
analysis applies to any penetrating particles (e.g., neutrons
or high energy electrons), insofar as the scattering can be
characterized by a scalar potential and the orientation and
structure of the sample are unknown (unlike goinometer-
based systems where both coordinate systems are known).
This might include, for example, the tracking of the ori-
entation of a single body from which nondestructive dif-
fraction patterns can be obtained as function of time.
‘‘Proof of principle’’ measurements at optical wavelengths
are currently under way.
This work was supported by NSF IDBR 0555845 and
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