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We present the first derivation of the analytic expression for the Peierls-Nabarro potential for crowdion

migration using the double sine-Gordon model. The analysis is guided by the group-specific trend in the

shapes of the periodic lattice potentials calculated for the body-centered-cubic transition metals in groups

5B and 6B of the periodic table. We combine density-functional calculations of the crowdion’s profile and

environment with an extended version of the analytical Frenkel-Kontorova model, and determine the

effective potential experienced by the defect’s center of mass. This reveals important underlying

differences between the metals in these groups, which are inaccessible to either the numerical or analytical

approaches alone, and accounts for the previously unexplained significantly higher crowdion migration

temperatures observed in the metals of group 6B relative to those of group 5B.
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Self-interstitial atom (SIA) defects are produced in crys-
talline materials under irradiation. Body-centered-cubic
(bcc) transition metals and their alloys (especially tungsten
and ferritic-martensitic steels) are the leading candidate
materials for fusion and advanced fission power plants, and
a quantitative understanding of SIA formation and migra-
tion behavior is essential if wewish to accurately model the
microstructural evolution of these materials [1]. Experi-
mental data for the onset of long-range migration of SIAs,
obtained mostly from resistivity recovery measurements
following electron irradiation, show a remarkable group-
specific trend depending upon the electron-to-atom ratio.
For group 5B of the bcc transition metals (V, Nb, and Ta),
the resistivity data indicate that SIAs are already mobile at
the irradiation temperature, usually about 6 K, whereas for
the elements of group 6B, the temperature for the onset of
long-range migration is 40 K for Cr, 35 K for Mo, and 27 K
for W [2]. Recent systematic density-functional theory
(DFT) studies of the formation energies of point defects,
spanning the entire group of bcc metals, reveal that the
single SIA defects of all nonmagnetic bcc transition metals
adopt a linear h111i crowdion configuration [3,4].
Crowdion defects consist of an additional atom inserted
into a string of atoms oriented along a close-packed direc-
tion in the lattice, usually the h111i direction in the bcc
case, and although in magnetic bcc-Fe it is not the most
stable SIA defect [5–7], clusters of SIAs in Fe do adopt this
configuration [1]. They are highly mobile in general be-
cause the translation along the string of the center of mass
of the defect (where the associated strain is the highest)
involves only very small displacements of each constituent
atom. It is possible to formulate a simple analytically
soluble model describing not only individual h111i crowd-
ion defects [8], but also clusters thereof [9], via the
Lagrangian

L ¼ X1
n¼�1

�
m _z2n
2

� �

2
ðznþ1 � zn � aÞ2 � VðznÞ

�
: (1)

The sum runs over the close-packed string of atoms (mass
m, positions zn), connected by harmonic springs (constant
�), interacting with the surrounding ‘‘perfect’’ lattice via
the potential VðznÞ. If the displacement of each atom un �
zn � na is assumed to vary slowly along the string, it can
be described by a continuous function uðzÞ, which satisfies
uð�1Þ ¼ a, uð1Þ ¼ 0, reflecting the single additional
atom in the string. (a is the equilibrium spacing of the

atoms in the close-packed string, and equals r0
ffiffiffi
3

p
=2 for the

h111i direction in a bcc crystal with lattice spacing r0).
Equation (1) is the Frenkel-Kontorova (FK) model, con-
ventionally used to model one-dimensional (1D) disloca-
tions (among other applications; for a review see [10] and
references therein).
The lattice potential VðzÞ is obviously periodic, and is

conventionally taken to be proportional to sin2ð�z=aÞ,
which leads to a kinklike arctangent solution for the dis-
placement field. However, as our DFT calculations dem-
onstrate, the potential acting on the h111i string is not well
described by a simple sine-squared function, particularly
for the transition metals of group 6B. Here we consider a
double-sine lattice potential of the form

VðzÞ ¼ V0

�
sin2

�
�z

a

�
þ �2 � 1

4
sin2

�
2�z

a

��
; (2)

which returns to the single-sine form in the limit� ! 1. As

� increases above 1 the peak flattens, and when �>
ffiffiffi
2

p
,

VðzÞ contains a local minimum at z ¼ a=2 (see Fig. 1).
Including this term amounts to truncating the Fourier series
for the true periodic potential at second rather than first
order. In the continuum limit, the Lagrangian (1) with the
potential (2) has the kinklike static displacement field
solution

uðzÞ ¼ a

�
arctan

�
�

sinhð��ðz� z0ÞÞ
�
; (3)

where �2 ¼ 2�2V0=�a
4 encodes the relative strength of
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the interaction within the string (�), and the interaction
with the surrounding lattice (V0). z0 is an arbitrary constant
representing the center of mass of the crowdion. This
solution was derived in [11] in the context of kinked
dislocation lines. When the single-sine lattice potential is
used (� ! 1), the displacement solution becomes u0ðzÞ ¼
ð2a=�Þ arctanð exp½��ðz� z0Þ�Þ. In this case, � has a
clear physical interpretation as the inverse length scale of
the defect: a smaller value of � corresponds to a more
slowly varying displacement field and a more ‘‘spread out’’
defect, involving more atoms than the large-� case. When
the more general potential is used, it is the combination��
which sets this scale, so a large �, corresponding to deep
local minima in the lattice potential, has a similar effect to
increasing V0 in the traditional form of the potential. In the
bcc transition metals considered below, this inverse length
scale is always less than 1 (in inverse lattice units), though
for Cr this is marginal. The crowdion’s total elastic energy
can be written

E0 ¼
Z 1

�1

�
�a2

2

�
du

dz

�
2 þ VðuðzÞÞ

�
dz: (4)

Substituting (3) into the above expression for the energy
shows that the solution partitions the energy equally be-
tween the elastic interaction of the atoms in the string and
the interaction with the surrounding lattice; i.e., the two
terms in the integrand of (4) are equal [the first integral of
the Euler-Lagrange equation reads ðu0Þ2 � VðuÞ]. Also,
since u ¼ uðz� z0Þ, E0 is independent of z0, reflecting
the continuum limit being taken. Physically, this corre-
sponds to the period of the lattice potential going to zero,
and in this approximation the crowdion moves freely
through the lattice (it is essentially a Goldstone mode
[8,12]). The only information about VðzÞ is that retained
in the shape of the kink solution. However, lattice discrete-
ness can play an important role, and the expression for E0

in (4) should be viewed as a zeroth order approximation to

the full discrete expression for the energy [8]

E ¼ X1
n¼�1

�
�

2
ðunþ1 � unÞ2 þ VðunÞ

�
! 2

X1
n¼�1

VðunÞ;

(5)

where the replacement follows from the equipartition prop-
erty mentioned above. un ¼ uðnaÞ; i.e., the continuum
displacement field solution is evaluated at each atom.
Substituting (3) in (2) and applying the Poisson summation
formula, Eq. (5) can be written as

Eðz0Þ ¼ E0 þ
X1
j¼1

Ij cos

�
2�jz0
a

�
; (6)

a Fourier series for the position-dependent energy of the
crowdion. The first term E0 is the same as Eq. (4), and is
independent of the position of the crowdion. The sum gives
the potential landscape that the crowdion as a whole ex-
periences, depending on the collective coordinate z0.
Arising entirely from the lattice discreteness, this is pre-
cisely analogous to the Peierls-Nabarro potential [13] ex-
perienced by an edge dislocation, and is entirely distinct
from the lattice potential VðzÞ, which describes the inter-
action between the individual atoms in the string with those
of the surrounding lattice.
The terms Ij cosð2�jz0=aÞ are given by

4V0�
4
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which leads eventually to
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where � ¼ 2�j=��a and qþ;� ¼ 1� 2�2 �
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1

p
. Note the considerable simplification when

the conventional lattice potential is used: on taking
the limit � ! 1, the term in braces becomes 2� !
4�j=�a and Ij ! 4j�a2cosechð�2j=a�Þ �
8j�a2 expð��2j=a�Þ, in agreement with Ref. [8]. In ei-
ther case, since �a�< 1, the cosech term suppresses the
potential, explaining the small energy barriers to crowdion
migration.
In order to estimate the values of the model parameters,

we turn to ab initio calculations of the lattice potentials
along the h111i direction shown in Fig. 1 for the bcc metals
of groups 5B and 6B. These were determined by consid-
ering a defect-free lattice, and calculating the energy per
atom of one of the h111i strings as it was rigidly displaced
relative to its neighbors along its axis using DFT. This
provides an accurate calculation of the periodic potential
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FIG. 1 (color). Energy of displaced h111i string in V, Nb, Ta,
Cr, Mo, W. Data points: DFT total energy per atom (VASP); solid
lines: fit of function V [Eq. (2)]; dashed lines: best fit of V when
� ¼ 1 for W, Mo, Cr.
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VðzÞ that is consistent with the 1D FK model. The DFT
computations were performed self-consistently with re-
spect to the electron charge density at fixed ionic positions;
hence, the changes in the metallic bonding between the
atoms as they are displaced are properly taken into ac-
count. DFT calculations performed with full ionic relaxa-
tions do not show significant deviations in the magnitude or
shape of the potentials.

The Perdew-Burke-Ernzerhof [14] generalized gradient
approximation for exchange and correlation functionals
was used, and to ensure the DFT results are code-
independent, we used two ab initio packages: (i) PLATO,
a package of linear combinations of atomic-type orbitals
[15] using the relativistic semicore separable pseudopoten-
tials developed by Hartwigsen et al. [16], and (ii) VASP, a
plane-wave based code using projected augmented wave
potentials [17]. A description of the PLATO method for bcc
transition metals is outlined in [3,4]. Standard projected
augmented wave potentials provided within the VASP code
were used with semicore electrons and the plane-wave
energy cutoff was set to 400 eV, which is sufficient for
total energy convergence in the bcc metals. A unit cell with
the supercell vectors, ~a1 ¼ 3r0½11�2�, ~a2 ¼ 3r0½�110�, and
~a3 ¼ ðr0=2Þ½111�, was used to calculate the periodic po-
tential along the [111] direction. The bcc lattice constants
r0 for all transition metals were predicted in our earlier
DFT calculations [3,4]. Brillouin zone sampling was done
using the Monkhorst-Pack scheme and the calculations
were carried out with 4� 6� 12 shifted k-point grids.
The quantitative results for the lattice potentials from
both codes were in agreement with each other. We note
that for bcc-Cr, due to the very small energy difference
between the nonmagnetic and antiferromagnetic states
[3,4,18], non-spin-polarized DFT calculations are shown
in this study.

Figure 1 demonstrates the clear group-specific trend in
the potentials, both in shape and predicted energy at the
central point. For group 5B, the DFT calculations show the
same structure of a flattening peak, whereas a structure
with a local minimum is characteristic of the metals in
group 6B. The lattice potential energy at the central dis-
placement increases from 0.70 to 0.85 to 0.95 eV for V, Nb,
and Ta, respectively, and from 1.02 to 1.41 to 1.88 eV for
Cr, Mo, and W. Also shown is the function VðzÞ of Eq. (2),
fitted to the density-functional results for the six metals
under consideration. This function can accurately accom-
modate all the features of the potentials, in particular the
local minima exhibited by Cr, Mo, andWof group 6B, with

a large amplitude of the second harmonic (�>
ffiffiffi
2

p
). The

single-sine [8,9] form for the potential is shown (dotted
line) for these three metals also, and cannot capture the
additional structure. V, Nb, and Ta of group 5B are closer to
the sinusoidal shape, though they still have a flattened peak

which requires the form of Eq. (2) to fully describe it (1<

�<
ffiffiffi
2

p
). The difference arises from the group-specific

nature of the metallic bonding and cohesive energy, which
the DFT calculations reveal [3].
Fitting the gradient of Eq. (3) to the DFT-determined

displacement gradients for h111i crowdions in the six
metals [3,4] under consideration fixes the spring constant
�, so the model is completely determined in terms of three
parameters V0, �, and � for each metal. The values are
given in Table I, together with the parameter�. The data in
the last two columns are discussed below. I1, the first
Fourier coefficient in the Peierls-Nabarro potential of
Eq. (8), is plotted versus � and � in Fig. 2 (the next-to-
leading coefficient is negligible across the parameter range
of interest). For the single-sine lattice potential (� ¼ 1) the
barrier is & 10�5 eV across the range of �. However,
higher values of � allow a more pronounced variation
with �, and, in particular, a marked increase is seen
when both � and � are large. The barrier heights for V,
Nb, Ta are 6:8� 10�4, 0:25� 10�4, and 0:087�
10�4 eV, respectively, and those for Cr, Mo, W are 12�
10�3, 2:4� 10�3, and 2:6� 10�3 eV, respectively. These
values are too small to be directly computed within DFT
(they are of the order of the DFT error). However, the
lattice potential values are several orders of magnitude
larger, and the analytical approach leading to Eq. (8)
bridges the gap in scales, allowing us to indirectly calculate

TABLE I. Fitted parameters and derived quantities for the
metals of groups V and VI. Also given are the estimated migra-
tion temperatures Tm in kelvin, and their experimental values
taken from Ref. [2].

Metal V0 (eV) � (eV=a2) � � Tm est. Tm [2]

V 0.689 41.1 1.31 0.575 �8 <6
Nb 0.835 69.1 1.41 0.488 �0:3 <6
Ta 0.940 81.6 1.36 0.477 �0:1 <6
Cr 1.03 63.1 1.73 0.568 �100 �40
Mo 1.41 130 1.66 0.463 �30 35

W 1.90 177 1.64 0.460 �30 27
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FIG. 2 (color). First Fourier coefficient of effective potential
versus � and �. (The prefactor of V0 is divided out as we focus
on the � and � dependence.)
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the small migration barriers using reliable DFT computa-
tions of much larger quantities.

The atomic positions no longer appear in the expression
for the crowdion’s energy (6) but, unlike in (4), their effect
remains. A large value of � corresponds to deep local
minima in the lattice potential. This mimics a larger value
of � in the conventional FK model: during a translation of
a more localized defect’s center of mass, the motion is
closer in nature to the translation of the individual atoms,
which leads to an increased barrier. The local minima in
the double-sine lattice potential lead to more regions of
alternating potential gradient; hence, more atoms experi-
ence a force resisting their motion, which has the same
effect. The contour I1 ¼ 0, visible in Fig. 2, represents a
relation between � and � which gives zero barrier at
leading order. The metals of group 5B lie closer to this
curve than those of group 6B, so in 6B we expect a
relatively higher migration temperature, as reported in
[2]. These data are reproduced in Table I, along with the
calculated energy barriers divided by Boltzmann’s con-
stant. This provides a very approximate estimate of the
migration temperatures according to the model (only the
first significant figure is given), and although they differ
quantitatively, the group-specific behavior is correctly pre-
dicted. We note again that for bcc-Cr the SIA migration
mechanism is likely to be more complicated since the
difference between the formation energies for the crowdion
and the h110i configuration is negligible.

In conclusion, we have used DFT to calculate the po-
tential experienced by a h111i string of atoms due to
neighboring strings, in the bcc transition metals of
groups 5B and 6B of the periodic table. This has revealed
a significant difference between the metals of the two
groups, namely, the existence of a pronounced local mini-
mum in the lattice potentials of the group 6B metals. These
cannot be accurately fitted by a single-sine function; how-
ever, the inclusion of the second harmonic in the function
can fully describe the potential for all six metals under
consideration. A FK model for h111i crowdions can be
applied with this generalized potential, and the three pa-
rameters of the model were determined via fits to the DFT
calculations of the potentials and displacement fields.
When the effects of lattice discreteness are taken into
account, the Peierls potential experienced by the defect’s
center of mass can be determined (this is zero when dis-
creteness is neglected, and generally too small to be di-
rectly estimated using DFT). This analytical calculation
reveals the impact a local minimum in the lattice potential
can have on the defect’s migration: a deep local minimum
leads to a significantly enhanced barrier to migration. This
can explain the observed large differences in the crowdion
migration temperatures between groups 5B and 6B, as
measured in resistivity recovery experiments [2]. A more

quantitative estimate of these temperatures could be made
by calculating the escape rates, which would require taking
several other factors into account, particularly the defect’s
effective mass and lattice friction. However, the results
presented here explain the key difference between the
groups and provide estimates of the migration barrier for
each metal in broad agreement with experimental mea-
surements. Since an edge dislocation can be thought of as a
suitable ensemble of crowdions [9], this work suggests that
edge dislocation mobility should follow a similar group-
specific pattern.
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