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The effect of toroidal rotation on the geodesic acoustic mode (GAM) in a tokamak is studied. It is

shown that, in addition to a small frequency upshift of the ordinary GAM, another GAM, with much lower

frequency, is induced by the rotation. The new GAM appears as a consequence of the nonuniform plasma

density and pressure created by the centrifugal force on the magnetic surfaces. Both GAMs in a rotating

plasma are shown to exist both as continuum modes with finite mode numbers m and n at the rational

surfaces q ¼ m=n as well as in the form of axisymmetric modes with m ¼ n ¼ 0.
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The geodesic acoustic mode (GAM) is a well-
established experimental phenomenon in tokamaks [1,2].
The mode is basically a magnetohydrodynamic (MHD)
continuumlike mode localized on a flux surface and, in
the original analysis by Winsor et al. [3], has the poloidal
(m) and toroidal (n) mode numbers both equal to zero. The
GAM with these mode numbers plays an important role in
theories of turbulent transport in tokamaks [4]. The fre-
quency of a GAM existing on a flux surface with safety
factor q is given by [3] !2

GAM ¼ !2
sð2þ 1=q2Þ, where

!2
s ¼ �p=ð�R2

0Þ is the sound frequency, � the adiabatic

index, p the pressure, � the density and R0 the (average)
major radius of the flux surface. This expression is valid for
a static, toroidal plasma with circular cross section, large
aspect ratio and low pressure. The same frequency appears
also in connection with Alfvén cascades (ACs) [5] and with
so-called beta-induced Alfvén-acoustic eigenmodes
(BAAEs) [6] in tokamaks with reversed or low magnetic
shear. Although frequency chirping GAMs with n ¼ 0 can
be excited in tokamaks [7], the ACs and BAAEs are
usually characterized by finite mode numbers [5,6], and
analytical theories of ACs are often based on assumptions
of large values of m and n [8]. The rather surprising
property of the GAMs to exist both as axisymmetric modes
as well as in the form of continuummodes with finite mode
numbers is one of the issues that will be addressed in this
Letter, including also effects of plasma rotation.

A phenomenon seemingly unrelated to the GAM is the
stabilizing effect of toroidal plasma rotation observed in
some tokamaks, especially in spherical tokamaks where
rotation speeds approaching the sound speed can be
achieved by neutral beam injection. Such an effect on the
sawtooth instability has, for instance, been seen both in
NSTX [9] and in MAST [10]. Furthermore, it appears that
for toroidal flows of this order of magnitude the stabiliza-
tion has to do with centrifugal effects that are present
already within a MHD description of the plasma [9–11].
A stabilizing effect of this kind on the ideal m ¼ n ¼ 1
mode was analyzed in Refs. [12,13], and the same effect
was later shown to be able to stabilize also Mercier modes

[14] as well as the quasi-interchange mode [15]. In the
present Letter it will be shown that there is a connection
between the rotational stabilization described above and a
GAM. More specifically, we show that a new GAM is
induced by the plasma rotation, and that the stabilization
analyzed in Refs. [12–15] has to dowith the coupling of the
instability to this rotation-induced GAM. Furthermore, the
existence of the new GAM branch, and therefore this
stabilizing mechanism, is shown to depend crucially on
the tangential gradients of the plasma density and pressure
on the flux surfaces created by the centrifugal force. For
this reason it is not possible to capture this stabilizing
effect in numerical codes that do not take the centrifugal
effects on the plasma equilibrium into account [16].
Let us consider a tokamak plasma that rotates toroidally

with frequency�ðrÞ, where we use the flux coordinates (r,
�, ’) defined in Refs. [13,14] in order to describe the
plasma equilibrium as well as small perturbations of this
equilibrium. If the equilibrium temperature is constant on
the flux surfaces, p=� ¼ TðrÞ, the centrifugal force creates
a nonuniform plasma density on each flux surface given by

�ðr; �Þ ¼ �0ðrÞeðR2�R2
0
Þ�2=2T where R is the major radius

[12–15]. A similar relation is valid for the pressure. The
following analysis will be based on the ordering
�0p=B

2
0 � �� "2, where B0 is the toroidal magnetic field

and " ¼ r=R0 � 1. Furthermore, we assume that the sonic

Mach number, M ¼ ð��2R2
0=2pÞ1=2, is of order unity.

The MHD spectrum of this plasma can be found by solving
the Frieman-Rotenberg eigenvalue equation for the
Lagrangian perturbation � � e�i!t [17]:

�!2� þ 2i�!v � r� � �v � r½ðv � rÞ��
þ r � ½��ðv � rÞv� þ Fð�Þ ¼ 0: (1)

Here, v ¼ �e’ is the equilibrium flow velocity, Fð�Þ ¼
�r�Pþ ½ðB � rÞQþ ðB � rÞQ�=�0 the static force op-
erator, �P ¼ �� � rp� �pr � � þB �Q=�0 the per-
turbed total pressure and Q ¼ r� ð� � BÞ the
perturbed magnetic field. A system of equations describing

the coupling of a perturbation with �r ¼ �m;nðrÞeiðm��n’Þ
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to the sidebands �r ¼ �m�1;nðrÞei½ðm�1Þ��n’� of order "
was derived from Eq. (1) in Ref. [14]. The final equation
for the main harmonic �m;n can be summarized as

ðLm;n þT m;nÞ�m;n þ Gf�m;n; �mþ1;n; �m�1;ng ¼ 0; (2)

where the operators Lm;n and T m;n are given by

L m;n � d

dr

�
r3ðm=q� nÞ2 d

dr

�
� rðm2 � 1Þðm=q� nÞ2;

(3)

T m;n � d

dr

�
r3A1

d

dr

�
þ r2

dA2

dr
� rðm2 � 1ÞA1; (4)

and the coefficients A1;2 in Eq. (4) have the form [14]

A1 ¼�!2
D ��2M2

!2
A

� ð2!2
D þ �þ!D�þ �2þ�2=4Þ�2 þ ð!2

D þ 2�þ!D�Þ!2
s

!2
Að�2þ!2

s �!2
DÞ

� ð�þ ! ��Þ; (5a)

A2 ¼�!2
D þ�2½ðm2 � 1ÞM2 þ 2m2 � n2 � 4�

!2
A

þ ðm� 1Þ ð�þ!D�þ �2þ�2=4Þ�2 þ ð!2
D þ 2�þ!D�þ 2�2þ�2Þ!2

s

!2
Að�2þ!2

s �!2
DÞ

� ðmþ 1Þð�þ ! ��Þ: (5b)

The notation (�þ ! ��) above stands for a term similar to
the previous one, but with �þ replaced by ��, where �� ¼
ðm� 1Þ=q� n. Furthermore, !2

A ¼ B2
0=ð�0�0R

2
0Þ is the

Alfvén frequency and !D ¼ !þ n� the Doppler-shifted
mode frequency. The various frequencies in Eq. (5) are
ordered as !D �!���!s � "!A, and the denomina-
tors �2�!2

s �!2
D come from the toroidal sidebands �’

m�1;n

that appear to first order in ", and manifest the coupling of
the Alfvén and slow continua by the geodesic curvature of
the magnetic field [18,19]. In the present analysis, which is
mainly focused on the continuous spectrum, the operatorG
in Eq. (2) is of minor importance. The reason for this is that
since the T m;n term and the G term in Eq. (2) both are of
order "2, these terms become comparable to theLm;n term
and therefore of interest only if m=q� n is of order " (or
smaller). With this ordering ofm=q� n it turns out that the
G term does not contribute to the continuous spectrum
[14]. Indeed, it can be shown that in low-shear plasmas
wherem=q� n� " in a finite region, the equations for the
sidebands �m�1;n can be solved exactly, and by using these
solutions in Eq. (2), the G term simplifies to the ‘‘Mercier
term’’ r2ðm2 � n2Þð�0 þM2�0Þ0�m;n, where �0ðrÞ ¼
2�0p0ðrÞ=B2

0, plus a term that comes from a homogeneous
solution of �mþ1;n [14,20,21]. We point out that, apart from
the expansion in " and the ordering �� "2, the only
assumption used in the derivation of Eq. (2) is that the
plasma cross section is circular. Thus, no assumption of
large mode numbers has been made, and it will be seen that
the equation even predicts the frequencies of the two
GAMs existing for m ¼ n ¼ 0 correctly, in spite of the
fact that the derivation in Ref. [14] is invalid for m ¼ 0.

Equation (2) plays a similar role for compressible, low-
frequency MHD phenomena in toroidal plasmas with cir-
cular cross section, large aspect ratio and �� "2 as the
Hain-Lüst equation plays for such phenomena in cylindri-
cal plasmas [22]. The way the denominator of dA2=dr
generates the continuum !2

D ¼ !2
s=q

2 also somewhat re-
sembles the way the apparent singularities of the Hain-Lüst
equation appear [22]. In the present case, however, the
continuum !2

D ¼ !2
s=q

2 is real, as noted previously both

for static [6] and rotating [23,24] plasmas. The continua of
most interest here, however, are those associated with the
equation ðm=q� nÞ2 þ A1 ¼ 0, and we first consider this
equation in the case of a nonrotating plasma. Form ¼ n ¼
0 and � ¼ 0 it is seen that the equation has two roots,
!2 ¼ !2

sð2þ 1=q2Þ ¼ !2
GAM and !2 ¼ 0. However, we

get the same two roots also with finite values of m and n
and q ¼ m=n. In Fig. 1 these two continua are shown by
the solid lines as functions of q for the mode numbersm ¼
6 and n ¼ 3 in a plasma with !2

s=!
2
A ¼ ��=2 ¼ 0:01.

Whereas the low-frequency branch has a minimum at
!2 ¼ 0 and approaches !2 ¼ !2

s=q
2 when m=q� n be-

comes finite, the high-frequency branch has a minimum at
!2 ¼ !2

GAM and approaches the shear Alfvén root !2 ¼
!2

Aðm=q� nÞ2 at finite m=q� n. This is consistent with
the way the GAM frequency appears in the initial, low-
frequency range of the ACs [5,8]. Furthermore, since the
shear Alfvén wave vanishes in the limit q ! m=n, it is
meaningful to classify such modes as GAMs with finite
mode numbers [6–8]. We point out that the curves in Fig. 1
are based on the expression �� 	 �1=q, and if the full
form of �� is used instead, the acoustic branch is some-
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FIG. 1 (color online). The two continua associated with the
equation ðm=q� nÞ2 þ A1 ¼ 0 in a static plasma, calculated for
��=2 ¼ 0:01, m ¼ 6=n ¼ 3, and �� 	 �1=q.
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what modified away from m=q� n ¼ 0. We also mention
that equations for the continua similar to the equations
discussed here recently have been derived by Gorelenkov
et al. [6] for static plasmas and by van der Holst et al. [24]
for rotating plasmas. On the basis of Eqs. (2)–(5), however,
it is possible to study also the properties of global eigen-
modes analytically, and some aspects of this were recently
discussed in Ref. [21] for a low-shear tokamak with para-
bolic pressure profile, using a simplified version of A1 and
neglecting the dA2=dr term. For a more thorough analysis,
the complete form of Eqs. (2)–(5) provides a suitable
framework for studying both the continua as well as global
eigenmodes, for instance the flow induced Alfvén eigen-
mode found in Refs. [23,24]. This is a large area for future
research, and we limit the discussion here to the continua
only, and examine, in particular, the validity of the ‘‘con-
tinuum frequencies’’ predicted for m ¼ n ¼ 0.

Including now also finite rotation in the equation
ðm=q� nÞ2 þ A1 ¼ 0, the two solutions !2 ¼ !2

GAM and

!2 ¼ 0 valid for a static plasma are modified to

!2
D ¼!2

s

�
1þ 1

2q2
þM2ðM2 þ 4Þ

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ 1

2q2
þM2ðM2 þ 4Þ

�

�
2 � 2M4

q2�

�
1� 1

�

�s �
:

(6)

These roots are also obtained both for m=n ¼ q and for
m ¼ n ¼ 0. Furthermore, both of the frequencies above, as
well as !2

D ¼ !2
s=q

2, are included in Eqs. (81)–(83) in
Ref. [24]. It will be shown rigorously later that both of the
roots in Eq. (6), but not !2

D ¼ !2
s=q

2, indeed are the
eigenfrequencies of two axisymmetric GAMs with m ¼
n ¼ 0. For slow rotation, M � 1, the large and the small
root in Eq. (6) are approximated by

!2
D ¼ !2

GAM1 ¼ !2
s

�
2þ 1

q2
þ 8M2

�
þ . . .

�
; (7a)

!2
D ¼ !2

GAM2 ¼ !2
BV ¼ M2�2

1þ 2q2

�
1� 1

�

�
þ . . . ; (7b)

respectively. The solid and dotted curves in Fig. 2 illustrate
the two roots in Eqs. (6) and (7), respectively, for q ¼ 1, 2,
3 and � ¼ 5=3.

The low-frequency root in Eq. (7b) is written in the same
form as in Refs. [13–15], with the subscript BV denoting
the relationship with the Brunt-Väisälä frequency of a
stably stratified fluid in a gravitational field [22]. In a local
frame following the plasma rotation, the nonuniform den-

sity �ðr; �Þ ¼ �0ðrÞeðR2�R2
0
Þ�2=2T on the flux surfaces rep-

resents a stably stratified fluid in the ‘‘effective gravity’’
g ¼ �2R, and the associated BV frequency [22] can be
shown to be of order !2

BV �M2�2ð1� 1=�Þ [13–15].
This indicates, but does not prove, that the root in
Eq. (7b) has to do with the nonuniform density and pres-
sure on the magnetic surfaces only. Such a relationship can

be proved, however, by inserting a tag � in the equation

�ðr; �Þ ¼ �0ðrÞe�ðR2�R2
0Þ�2=2T (and in the corresponding

pressure equation) and in this way trace the effects of these
expressions for � and p in the derivation of Eq. (2). Doing
this, it turns out that the main consequence of using � � 1
is a modified coefficient A1, and therefore also modified
continua. One finds that the modified continuum frequen-
cies are again given by Eq. (6), but with the last term inside
the square root now given by �2�M4ð1� 1=�Þ=ðq2�Þ
and with the factor M2 þ 4 replaced by �M2 þ �þ 3.
The equation replacing Eq. (7b) then becomes !2

D ¼
!2

GAM2 ¼ !2
BV ¼ �M2�2ð1� 1=�Þ=ð1þ 2q2Þ, showing

that the low-frequency root in Eq. (6) and (7b) indeed
vanishes if a uniform plasma density and pressure on the
flux surfaces is assumed (� ¼ 0). The effect of using � ¼
0 for the high-frequency root in Eq. (7a) is much smaller.
The importance of the density and pressure distribution on
the flux surfaces for the value of !2

D in Eq. (7b) can be
understood also from the stability condition for the con-
tinua in Eq. (56) in Ref. [24]. This stability condition
involves only the tangential gradients of � and p on the
flux surfaces and therefore predicts marginal stability if �
and p are functions of r only, in agreement with the
�-analysis above. Since the frequency in Eq. (7b) is the
key quantity responsible for the stabilization in Refs. [12–
15], it follows that the centrifugal effects on the equilib-
rium are of crucial importance for the MHD stability of
plasmas rotating at sonic or near-sonic speeds.
It should be noted that the analysis in Refs. [14,24]

assumes finite mode numbers, and that axisymmetric
modes never are discussed in those papers. To complete
the present study, we therefore outline a theory of m ¼
n ¼ 0 GAMs in rotating plasmas below from which both
the frequencies as well as the structure of the axisymmetric
modes are obtained. Anticipating that the plasma perturba-
tion � for such modes is tangential to the flux surfaces [3],
and that �� is dominating, we use the following ansatz for

�: �� ¼ ��ð0Þ
0 þ "ð��ð1Þ

1 ei� þ ��ð1Þ
�1 e

�i�Þ þ . . . , and �’ ¼
"ð�’ð1Þ

1 ei� þ �’ð1Þ
�1 e�i�Þ þ . . . . The subscripts denote the
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FIG. 2 (color online). The two GAM frequencies in Eq. (6) as
functions of the sonic Mach number (solid lines), and the
approximations in Eqs. (7a) and (7b) (dotted lines).
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poloidal mode number and the superscripts the order with
respect to ". It turns out that the form ofQ needed to match

these expressions for �� and �’ is given by Q’ ¼
"4ðQ’ð4Þ

1 ei� þQ’ð4Þ
�1 e�i�Þ þ . . . to leading order in ".

From the toroidal component of the equation Q�r�
ð� � BÞ ¼ 0 of order "2 one then finds that ��ð1Þ

�1 ¼
�’ð1Þ
�1 =q. Thereafter we obtain B0Q

’ð4Þ
�1 ¼

�ið�p0=qR0Þ�’ð1Þ
�1 � irð�p0=R

2
0 þ �0�

2=2Þ��ð0Þ
0 from

the �-component of Eq. (1) of order "3. The toroidal
component of Eq. (1) then gives the toroidal sidebands

�’ð1Þ
�1 ¼ � r

qR0

!2
s ��2=2
 q!�

ð!2
s=q

2 �!2Þ ��ð0Þ
0 ; (8)

whereas the poloidal component, with ��ð1Þ
�1 , �

’ð1Þ
�1 , and

Q’ð4Þ
�1 above inserted, becomes

e � � ½FR�¼�ðr2=R2
0ÞA1�

�ð0Þ
0 þ"4½ð. . .Þe2i�þð. . .Þe�2i��;

(9)

with ½FR� denoting the left-hand side of Eq. (1) and A1 the
coefficient in Eq. (5a) with m ¼ n ¼ 0. From the

�-independent part of Eq. (9) it follows that ��ð0Þ
0 ðrÞ ¼

const� �ðr� r0Þ, where r0 is a radius where A1 ¼ 0.
This proves that both of the roots in Eq. (6) represent the
eigenfrequencies of two axisymmetric m ¼ n ¼ 0 GAMs.

The presence of the e�2i� Fourier components of order
"4 in Eq. (9) has interesting consequences. It turns out that
in order to be able to eliminate these components, radial
components of � (of order "2) and of Q (of order "3), both
with poloidal mode numbersm ¼ �2, and existing outside
r ¼ r0, are required (also for � ¼ 0). This shows that the
character of them ¼ n ¼ 0GAMs as modes localized on a
flux surface is valid only to leading order in ". These
results on the radial and poloidal structure of the axisym-
metric GAMs, and more details concerning the perturba-
tion analysis above will be published elsewhere.

In summary, theory for geodesic acoustic modes
(GAMs) in toroidally rotating tokamak plasmas has been
developed in this Letter. From the normal mode equation
for low-frequency MHD phenomena in rotating, toroidal
plasmas with large aspect ratio derived in Ref. [14], and
summarized in Eq. (2), it is shown that a new GAM, of very
low frequency, is induced by the rotation. Both the ordinary
GAM as well as the new GAM exist in the form of con-
tinuum modes with finite mode numbers at the rational
surfaces, and both of them display increasing frequencies
with increasing plasma rotation, as shown in Fig. 2. Similar
results were predicted in a previous study of Alfvén con-
tinua in rotating, toroidal plasmas by van der Holst et al.
[24]. As a major result of the present Letter, it is shown that
both of these modes in addition exist in the form of
‘‘genuine’’, axisymmetric GAMs with mode numbersm ¼
n ¼ 0, thereby extending the result by Winsor et al. [3] to
rotating plasmas. It is, furthermore, shown that the new,
low-frequency GAM exists as a consequence of the non-

uniform plasma density and pressure created by the cen-
trifugal force on the magnetic surfaces, and that the
oscillation frequency of the mode therefore is of similar
origin as the Brunt-Väisälä frequency of a stably stratified
fluid in a gravitational field [22]. The stabilizing effect of
toroidal rotation on the MHD instabilities analyzed in
Refs. [12–15] is caused by the coupling of the instabilities
to this low-frequency, finite (m; n) GAM. Because of its
existence also as an axisymmetric mode, however, the new
GAM may in addition be of importance for the turbulent
transport in rotating plasmas [4].
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