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We theoretically predict and experimentally demonstrate inhibition of linear absorption for phase and

group velocity mismatched second- and third-harmonic generation in strongly absorbing materials, GaAs,

in particular, at frequencies above the absorption edge. A 100-fs pump pulse tuned to 1300 nm generates

650 and 435 nm second- and third-harmonic pulses that propagate across a 450-�m-thick GaAs substrate

without being absorbed. We attribute this to a phase-locking mechanism that causes the pump to trap the

harmonics and to impress on them its dispersive properties.
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Since its inception in the early 1960s, the study of non-
linear frequency conversion has focused on improving the
efficiency of the process in transparent materials [1–6].
Nonlinear conversion rates depend on factors such as phase
and group velocity mismatch and peak pump intensity.
Linear absorption is considered detrimental since it is
assumed that the generated harmonics are reabsorbed.
Harmonic generation in absorbing materials and/or semi-
conductors at frequencies above the absorption edge has
been considered in the context of measuring the nonlinear
coefficients [7–13], but it has not been as widely studied as
in the transparency range. For example, the enhancement
of third-harmonic generation in various types of glasses
opaque to third-harmonic (TH) light was experimentally
demonstrated [11]. UV second-harmonic generation
(SHG) above the absorption band edge in LiNbO3 [12]
as well as UVand x-ray [13] SHG in semiconductors have
been reported. These examples show that the subject is of
interest for the purpose of realizing coherent sources and
because of the many potential applications that semicon-
ductors find in optical technology.

A better understanding of propagation phenomena at or
above the absorption edge of semiconductor and dielectric
materials [14] is needed not only in view of the discrep-
ancies that exist between predictions and experimental
observations [11,12] but also because in this range semi-
conductors such as GaAs display a negative dielectric
permittivity. This raises the possibility of new effects re-
lated to negative refraction of light at optical and UV
wavelengths, absorption notwithstanding. A systematic
examination of dynamics and nonlinear frequency conver-
sion above the absorption edge of semiconductors is still
lacking primarily because these processes are thought to be
uninteresting and inefficient, due to absorption and the
naturally high degree of phase mismatch. In this Letter,

we dispel this notion and predict and experimentally ob-
serve the inhibition of absorption for femtosecond, SH and
TH (650 and 435 nm, respectively) signals in a GaAs
substrate 450 microns thick. In the opaque region, the
characteristic absorption lengths of GaAs are much less
than 1 �m: Linear transmittance through a one-micron-
thick GaAs substrate is �10�4 at 532 nm and �10�8 at
364 nm.
Bulk GaAs becomes opaque below �900 nm. Our the-

ory shows that the pump, tuned to a region of optical
transparency, captures and impresses its dispersive proper-
ties on portions of the generated harmonic signals, which in
turn behave as parts of the pump and copropagate for the
entire length of the sample without being absorbed. This
spectacular behavior is brought about by a phase-locking
phenomenon [15] that impacts harmonic generation and
other types of parametric processes, with seeded or un-
seeded harmonic signals. These general conclusions apply:
If the medium is transparent at the pump frequency, then
the material will be transparent at the harmonic frequen-
cies. Similarly, if the medium absorbs the pump and is
transparent in the SH and TH ranges, the phase-locked
components are absorbed.
The prediction of a two-component SH signal (homo-

genous and inhomogeneous solutions of the wave equa-
tion) was made early on [4] and was later discussed and
observed [5,6]. In transparent materials, the pulsed SHG
process develops as follows: The inhomogeneous signal is
trapped by the pump and propagates at the pump’s group
velocity [15]. The homogeneous component propagates
according to material dispersion and eventually walks off
from the pump. In absorbing materials [7–13], Maker
fringes [3] are observed as long as material absorption is
small, while the amplitude of the transmitted beam is
independent of sample thickness [12]. Thus, the evidence
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suggests that Maker fringes disappear when the interaction
between the pump and the homogenous SH component
stops. This can occur if the homogenous component either
is absorbed or walks off from the pump, in both cases
leaving the phase-locked signals intact. Even though these
predictions and observations are not new, it was not until
recently that in transparent materials these phenomena
were cast in terms of a phase-locking mechanism [15]
that also impacts higher order nonlinearities [16].
Calculations show that the trapped signals acquire the
dispersive properties of the pump; i.e., they propagate
with the pump’s index and group velocity. If the group
velocity mismatch is relatively large, the pump and the
homogenous SH components separate immediately upon
entering the medium, and the conversion process turns into
a surface phenomenon: The pump field and its captive
harmonic signals do not exchange energy inside the me-
dium [15]; i.e., their relative phase difference is constant,
until another interface is crossed.

In absorbing materials, discrepancies have been re-
corded between predictions and experimental results
[11,12]. Even though there is recognition that the two
generated SH components propagate at different group
velocities and have peculiar phase properties [17], a spec-
tral analysis reveals a far more intimate connection than
previously thought between the pump and the trapped

harmonic pulses, i.e., a phase locking that binds the pulses
spatially and temporally [15]. In the present analysis, we
calculate the energy velocities of the generated pulses,

defined as usual: Ve ¼ hSi
hUi , where S ¼ c

4�E�H is the

Poynting vector and U the energy density; the brackets
mean a definite integral. The group velocity calculated as
Vg ¼ @!

@k is not adequate, because this value describes the

homogenous signal. Experimental and theoretical evidence
[5,6,15] show that the pump and the phase-locked pulses
propagate at the same energy velocity. In confirmation of
the fact that the generated fields behave in all respects as if
they were pump fields, our calculations show that the
proper energy velocities for the second- and third-
harmonic fields (that is to say, the velocity of the pump
field) are recovered only if the Landau energies [18]

Uðz; tÞ ¼ 1
8� ½Reð@½!"ð!Þ�

@! ÞjEj2 þ Reð@½!�ð!Þ�
@! ÞjHj2� are eval-

uated with the material parameters of the pump frequency.
Therefore, we find that Ve is identical for all pulses only if
the generated harmonic fields are attributed the material
dispersion of the pump. This finding cements the notion
that the phase-locked pulses behave as the pump pulse does
and ultimately are required to be treated as such in the
application of boundary conditions.
To model simultaneous second- and third-harmonic gen-

eration in ordinary materials, we assume that the fields may
be decomposed as a superposition of harmonics:

E ¼ x̂
X1

‘¼1

½E‘!ðz; tÞ þ c:c:� ¼ x̂
X1

‘¼1

½E‘!ðz; tÞei‘ðkz�!tÞ þ c:c:�;

H ¼ ŷ
X1

‘¼1

½H‘!ðz; tÞ þ c:c:� ¼ ŷ
X1

‘¼1

½H ‘!ðz; tÞei‘ðkz�!tÞ þ c:c:�;
(1)

where E‘! andH ‘! are generic, spatially and temporally dependent, complex envelope functions; k and! are the carrier
wave vector and frequency, respectively, and ‘ is an integer. Equations (1) are a convenient representation of the fields, and
no a priori assumptions are made about the envelopes. The linear response of the medium is described by a Lorentz
oscillator model: "ð!Þ ¼ 1� !2

p

!2þi�!�!2
r
, and�ð!Þ ¼ 1, where �,!p, and!r are the damping coefficient and the plasma

and resonant frequencies, respectively. Second- and third-order nonlinearities are introduced as a nonlinear polarization of
the type: PNL ¼ �ð2ÞE2 þ �ð3ÞE3. Assuming that the polarization and currents may be decomposed as in Eqs. (1), and that
no diffraction is present, we obtain the following Maxwell-Lorentz system of equations for the lth field components:

@E‘!

@�
¼ i�‘!ðE‘!�H ‘!Þ�4�ðJ ‘!P ‘!Þ�@H ‘!

@�
þ i4��‘!PNL

‘!�4�
@PNL

‘!

@�
;

@H ‘!

@�
¼ i�‘!ðH ‘!�E‘!Þ�@E‘!

@�
;

@J ‘!

@�
¼ð2i�‘!��‘!ÞJ ‘!þð�2

‘!þ i��‘!��2
r;‘!ÞP ‘!þ�!2

p;‘!E‘!;
@P ‘!

@�
¼J ‘!; (2)

where J ‘!0 P ‘!0 and PNL
‘! are the linear current and the linear and nonlinear polarizations, respectively. The coordinates

are scaled so that � ¼ z=�0, � ¼ ct=�0, !0 ¼ 2�c
�0

, where �0 ¼ 1 �m is a convenient reference wavelength; �‘!;�‘! ¼
2�‘!=!0, �r;‘! ¼ 2�!r;‘!=!0, and !p;‘! are the scaled damping coefficient, wave vector, and resonance and plasma
frequencies for the ‘th harmonic, respectively. Expanding the field powers in terms of generic envelope functions leads to

PNL
! ¼ 2�ð2ÞðE�

2!E3! þ E�
!E2!Þ þ 3�ð3ÞðjE!j2E! þ E2

2!E
�
3! þ E3!E�2

! þ 2jE2!j2E! þ 2jE3!j2E!Þ;
PNL

2! ¼ �ð2ÞðE2
! þ 2E�

!E3!Þ þ 3�ð3ÞðjE2!j2E2! þ 2jE3!j2E2! þ 2E�
2!E3!E! þ 2jE!j2E2!Þ;

PNL
3! ¼ 2�ð2ÞE2!E! þ �ð3ÞðE3

! þ 6jE2!j2E3! þ 3jE3!j2E3! þ 3E2
2!E

�
! þ 6jE!j2E3!Þ:

(3)

Equations (2) represent 12 nonlinear coupled equations supplemented by Eqs. (3) and are solved using a time-domain,
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split-step, fast Fourier transform-based pulse propagation
algorithm [19]. Solving Eqs. (2) without introducing ab-
sorption reveals the existence of trapped and homogeneous
SH and TH components. The homogeneous components
generally travel at group velocities slower than the pump
and eventually walk off. The pump and the trapped por-
tions of the SH and TH signals travel at the same energy
velocity. The generation of the homogeneous and phase-
locked components is thus a fundamental property of the
nonlinear process, independent of material parameters, and
is discussed in detail in Ref. [15].

What happens when significant absorption is present at
the harmonic frequencies? We simulate the propagation of
100-fs, 160 MW=cm2 incident pulses inside a 450-micron-
thick GaAs substrate tuned to 1300 nm. The peak power
used avoids shape changes due to self- and cross-phase
modulation and nonlinear pump absorption, which under
these conditions could impact the dynamics if the sample
were several millimeters thick. For short-enough incident
pulses, linear dispersion can steadily erode the peak inten-
sity of the pump pulse, a process that mimics pump deple-
tion and reduces the coupling to the harmonic fields
inducing their decay. With these considerations in mind,
in Fig. 1, we show the pump and the trapped harmonic
pulses propagating through a GaAs substrate. In Fig. 2, we
depict the power spectrum of the pulses shown in Fig. 1.
These profiles become stationary once the pump is com-
pletely inside the substrate. In Figs. 1 and 2, we note the
absence of the homogeneous components; their spectral
positions are marked by vertical red (SH) and blue (TH)
lines in Fig. 2. In Fig. 3, we show the energies of the pump
and harmonic pulses inside and to the right of the substrate.

From this figure, one discerns that the SH and TH energies
are generated at the entry surface and remain constant
while the pulses transit through the sample. A spectral
analysis of the signals shows that the frequency makeup
of each pulse does not change with distance, an indication
that no energy is exchanged. However, the pulses interact
once again at the exit surface, where harmonic energy may
be created (TH) and lost (SH) [15]. The top of Fig. 3
contains a plot of the complex index of refraction of
GaAs, as reported by Palik [14]; the Lorentz parameters
are thus chosen (see caption of Fig. 1) to reflect these data.
Our calculations thus prove that the introduction of ab-
sorption causes the trapped harmonics to survive in the
form of phase-locked pulses.
The predicted survival of the phase-locked SH and TH

fields was experimentally verified using the setup shown in
Fig. 4. An optical parametric amplifier pumped by
�100 fs, amplified Ti:sapphire pulses generated the
pump at 1300 nm with a 1 kHz repetition rate. The colli-
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FIG. 1 (color online). Pump and harmonic pulses propagating
through a GaAs substrate. The Lorentz parameters are !p ¼
9:425, !r ¼ 2:98, and � ¼ 0 (n� 3:41) for the pump (� ¼ 0
effectively makes the medium transparent to the pump); !p ¼
9:425, !r ¼ 2:98, and � ¼ 0:5 (n ¼ 3:83þ i0:18) for the SH;
and !p ¼ 9:425, !r ¼ 2:98, and � ¼ 1:65 (n ¼ 4:65þ i1:25)

for the TH. Only the phase-locked components survive.

FIG. 2 (color online). k-space spectrum of the fields depicted
in Fig. 1. The vertical, dashed lines show the position of the
homogeneous components had absorption been neglected.
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FIG. 3 (color online). Bottom: Pump (right axis) and harmonic
(left axes) energies inside and to the right of the substrate.
Harmonic generation occurs at entry (time �150) and exit
(time �1200) surfaces, and the energies remain constant inside
the substrate. At the exit surface, some SH energy is lost, while
the TH signal nearly doubles in magnitude, although opposite
behavior is also possible [15] using slightly different material
dispersion.
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mated pump irradiated the GaAs substrate at an angle of
20�. This angle gave the best SH conversion efficiency;
THG was less sensitive to the incident angle. After passing
through the GaAs, the SH and TH fields were separated
from the pump using a prism and lens/slit assembly. The
signals were coupled to a spectrometer by means of a
liquid light guide and were then measured using a near
infrared photomultiplier tube (for the pump) or liquid
nitrogen cooled CCD array (for SH and TH). The measured
spectra for the pump and its first two harmonics are shown
in Fig. 5. Absolute values of the SH and TH energies were
calibrated by sending laser beams of known power along
the same optical paths and through the same detection
system, and we were able to estimate the SH and TH
conversion efficiencies to be 1:3� 10�8 and 2:5� 10�9,
respectively. Removing the GaAs sample from the beam
path caused the conversion efficiencies to drop by a factor
of 20 for the SH and by a factor of 2 for the TH. Without
the sample in the beam path, nearly all optical elements
(metallic mirrors, prisms, etc.) yielded some SHG, while

some TH signal was generated by the mere traversal of air.
Conversion efficiencies and pump transmittance data were

used in the model to estimate �ð2Þ � 100 pm=V and n2 �
10�11 cm2=W, respectively.
In conclusion, we have presented theoretical and experi-

mental evidence that absorption can be inhibited in opaque
materials, well above the absorption edge of semiconduc-
tors and dielectrics alike. This dramatic result is due to a
phase-locking mechanism that causes the pump to trap and
impress its dispersive properties to the generated harmonic
signals. We have shown that a GaAs substrate 450 microns
thick supports the propagation of red and violet light. Our
results suggest that it is possible to achieve significant
nonlinear frequency conversion at high frequencies, par-
ticularly towards the UV, using readily available sources
and materials and that the still relatively low conversion
efficiencies can be improved significantly in a cavity en-
vironment, where phase locking still holds. Finally, as
pointed out in Ref. [20], accessing regimes that are outside
the norm highlights the fact that our ‘‘understanding of
nonlinear wave conversion phenomena is still far from
complete,’’ with many more surprises that are likely wait-
ing to be revealed.
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FIG. 4 (color online). Experimental setup. A beam generated
by an optical parametric amplifier (OPA) irradiates a GaAs
substrate. After passing through the sample, a prism [equilateral
dispersing prism (EDP)] separates the harmonics. The three
beams are coupled to a spectrometer via a liquid light guide
(LLG) and measured using a near infrared photomultiplier tube
(PMT) (for the pump) or a CCD (for the SH and TH). A
moveable slit assembly provides spatial filtering so that only
one beam reaches the LLG.

FIG. 5 (color online). Measured spectra of the pump and the
transmitted harmonics. The area under each spectrum corre-
sponds to the measured energy (2:9 �J for pump, 3:7�
10�8 �J for SH, and 7:3� 10�9 �J for TH).
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