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We theoretically and experimentally evidence that fiber systems are convective systems since their
nonlocal inherent properties, such as the dispersion and Raman effects, break the reflection symmetry.
Theoretical analysis and numerical simulations carried out for a fiber ring cavity demonstrate that the
third-order dispersion term leads to the appearance of convective and absolute instabilities. Their
signature is an asymmetry in the output power spectrum. Using this criterion, experimental evidence
of convective instabilities is given in a fiber cavity pumped by a pulsed laser.
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Convective and absolute instabilities arising in temporal
systems as well as in spatially extended systems are com-
mon to a class of nonlinear dynamical systems, namely, the
convective ones. They form a platform of multidisciplinary
research activities including, e.g., hydrodynamics [1],
plasma physics [2], traffic flow [3], surface science [4],
chemical reactions [5], and nonlinear optics [6–8]. It has
been shown that the existence of convective instabilities in
such systems gives rise to new and unexpected behaviors
such as self-pulsing instabilities [8], pattern selection [9],
and noise-sustained structures [1,9]. The key feature for the
occurrence of such convective regimes in a system is the
presence of nonlocal terms that break the reflection sym-
metry in the governing equations. In most nonlinear sci-
ence modeling, these terms appear in the form of either
first-order spatial or temporal derivative accounting for
local couplings, or distributed integrals accounting for
global couplings. The reflection symmetry breaking in-
duced by these terms leads to convective and absolute
instabilities, giving rise to asymmetric solutions. For in-
stance, in spatially extended systems, convective regimes
have been recently observed by tilting the feedback mirror
in experiments on a liquid crystal with optical feedback
[7], or, in temporal systems, by mismatching the synchro-
nization of the pump pulses in fiber ring cavity experiments
[8]. Thus, all systems whose models possess nonlocal
terms that break the reflection symmetry are convective.
Notice that this includes the huge number of amplitude
equations as nonlinear Schrödinger, Ginzburg-Landau, and
Swift-Hohenberg equations.

In this Letter, we show that fiber systems belong to the
class of convective systems (see [10] for this classification)
because they are mainly modeled by different forms of the
extended nonlinear Schrödinger equation. The nonlocal
terms stem from either higher order temporal derivatives
(nonlocal coupling) or the Raman effect (global coupling).
These terms provide both the reflection symmetry breaking
and the traveling character for the spontaneous generation

of convective instabilities. It turns out that optical fiber
systems systematically exhibit convective and/or absolute
regimes. We demonstrate here, by considering a fiber ring
resonator, the generation of convective regimes for both cw
and pulsed injected fields. More precisely, our analytical
study predicts that the third-order dispersion term leads to
the existence of two distinct instability thresholds, namely,
the convective and absolute ones. Numerical simulations
obtained by integrating the governing equations of the fiber
cavity including boundary conditions confirm these pre-
dictions and show that the signature of convective regimes
can be characterized by an asymmetry in the power spec-
trum of the output field [11]. Using this asymmetry as a
criterion we have evidenced the experimental occurrence
of convective instabilities in a fiber cavity pumped by a
pulsed laser in complete agreement with the theory.

The system under investigation is a ring cavity whose
nonlinear element is a fiber. Figure 1 depicts a simplified
scheme of the experimental setup. A laser field with power
kEik2 is launched into the cavity through a beam splitter.
At each round-trip the light inside the fiber is coherently
superimposed with the input beam. The experimental de-
vice dynamics can be described by the extended nonlinear
Schrödinger equation with boundary conditions as [12]
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FIG. 1. Experimental setup. BS, beam splitter.
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with tR being the round-trip time which is the time it takes
for a pulse to travel the cavity length L with the group
velocity, �0 the linear phase shift, T2 (�2) the mirror
intensity transmissivity (reflectivity), and L the cavity
length. The electric field inside the cavity is denoted E.
�2;3 are the second- and third-order dispersion terms,
respectively. � is the nonlinear coefficient, z the longitu-
dinal coordinate, � the time in a reference frame moving at
the group velocity of the light, and R��0� the nonlinear
response including both instantaneous (Kerr effect) and
delayed contributions (Raman effect). To study the role
of the nonlocal terms (odd-order dispersion and Raman
effect) in the generation of convective regimes, and to keep
mathematics as simple as possible, we perform the reduc-
tion of the above infinite-dimensional map [Eqs. (1) and
(2)] into the following modified Lugiato-Lefever equation
that has been proven to be relevant for describing weakly
nonlinear dynamics in the fiber cavity [12]. It reads
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where t0 � t�T=2tR� with t the real time, �0 � ��T2=L�1=2,
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and � � 2�0=T2. Here we neglect the Raman contribution
but keep the Kerr effect and carry out the analytical study
for configurations where the dispersion slope (�3) influ-
ence is significant as compared to the lower order disper-
sion term. This assumption corresponds to a configuration
where the frequency of instability is close enough to the
pump carrier frequency, so that the Raman gain or absorp-
tion value is negligible compared to the modulational
instability (MI) one. The steady state response  s of
Eq. (3) satisfies Ss��1� i���Is�� s, where Is � j sj2.
Starting from the above equation, we can perform a linear
stability analysis that provides us with the convective and
absolute thresholds peculiar to convective systems. As-
suming perturbations of the stationary state in the form
expi�Q�0 ��t0�, the following dispersion relation is ob-
tained:
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Note that the role of the third-order dispersion on soliton
propagation and radiation emission has been studied pre-
viously in Refs. [13–16]. Our present work shows the
appearance of convective instability as a result of reflection
symmetry breaking caused by �3. The convective thresh-
old is obtained by canceling the growth rate Im���Qc�� of
the most unstable mode Qc. The absolute threshold is
determined following the method of steepest descend
[17]. It is reached when Im���Qs�� � 0, where Qs is a
saddle point satisfying d�=dQ � 0. These thresholds are
plotted in Fig. 2 versus the dispersion slope parameter �3.
As can be seen from this figure, there exists a convective

regime as soon as �3 � 0. It is located between the con-
vective and the absolute thresholds and increases mono-
tonically with �3. Although the third-order dispersion does
not impact the onset of MI, it leads to the appearance of
convective and absolute instabilities as it introduces a
group velocity through the dispersion relation [first right-
hand term in Eq. (4)]. The fact that the threshold does not
depend on �3 is not surprising. The main feature of a
convective instability is not to necessarily impact the in-
stability threshold but to give rise to a nonvanishing ‘‘group
velocity’’ of the wave packet generated by small localized
perturbations.

To check the values of these thresholds, we have per-
formed numerical integrations of the infinite-dimensional
map with boundary conditions [Eqs. (1) and (2)] using the
split-step Fourier method. The determination of the con-
vective and absolute thresholds is carried out by using the
following well-known classical test for identifying the
nature of instability: we initialize the system with a local-
ized perturbation at time t � 0 and observe its evolution.
Two dynamical behaviors are then developed: (i) the ad-
vection is ‘‘faster’’ than the growth of the initial local
disturbance so that the system returns locally to its initial
homogeneous steady state; (ii) the growth dominates the
drift upstream so that the system reaches a modulated state.
The first regime reveals the occurrence of a convective
instability (CI) and the second one characterizes an abso-
lute instability (AI). Consequently, we superimpose, at the
first round-trip of integration, a small localized perturba-
tion on the continuous wave pump with a frequency in the
band of MI. This disturbance corresponds to a sine oscil-
lation with a Gaussian envelope of short duration time
(2 ps) and small amplitude (a few percent of the pump
power). In the subsequent round-trips, only the continuous
wave is injected. Then, the temporal evolution of this
perturbation provides us the convective and the absolute
nature of the regime. Typical temporal evolutions of the

FIG. 2. Evolution of the convective and absolute thresholds
versus the value of the dispersion slope. �2 � �5�
10�28 s2=m, � � 2:5� 10�3 W�1 km�1, �0 � 0, L � 60 m,
R � 0:8267, and T � 0:303. These parameters correspond to a
standard telecommunication fiber (with �3�1:2�10�40 s3=m).
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perturbation are shown in Figs. 3(a) and 3(b) using a
‘‘pseudospatiotemporal’’ representation corresponding to
the fast temporal evolution of the system in the comoving
reference frame (horizontal axis) plotted at each round-trip
(vertical axis). In other words, this is the slow time versus
the fast time evolution. These diagrams clearly show the
main characteristics of convective and absolute regimes
(Figs. 3). For instance, the power evolution of the intra-
cavity field at the fixed time value � � 6:5 ps demonstrates
that for the convective regime the perturbation is amplified
but the system locally returns back to the steady state value
[Fig. 3(c)], whereas for the absolute regime the same
perturbation leads to a stable modulated state [Figs. 3(b)
and 3(d)]. In both cases a symmetry breaking in the tem-
poral domain is observed during the evolution. From this
analysis we got the numerical convective and absolute
threshold values that fully confirm the analytical ones as
can be seen in Fig. 2 (crosses). A striking feature appearing
in Fig. 2 is the existence of a limit value �3lim

’ 14:27�
10�41 s2=m, over which the instabilities become purely
convective. It means that under pulsed pumping, if no noise
is present in the fiber system or on the input signal, no
instability is able to develop in the system, even above the
convective threshold. The initial input perturbations will
first induce the rising up of MI and then disappear after
some time due to the drift that will drive the oscillations
below the CI threshold. On the contrary, in a noisy system,
the instabilities will be sustained by noise and the two

expected side bands will be observed in the output power
spectrum. It is worth noting that with a cw pump the
behavior is completely different and the observation of
MI for �3 >�3lim

is possible whatever noise conditions
are. Experimentally, the previous classical perturbation test
is not accessible for two reasons. The most important
reason is due to the presence of noise in the system, and
the second one is due to the frequency band of the insta-
bility (few THz) that is well above the bandpass of photo-
detectors. The former one leads to noise-sustained
oscillations in the regime of convective instability. As a
result, propagating modulated states are observed in the
pseudospatiotemporal mapping diagrams for both unstable
regimes of CI and AI, but do not differ sufficiently to be
distinguished without any ambiguity. Thus, in order to
evidence the existence of CI and AI regimes, we look for
a signature of these regimes based on the study of the
output power spectrum features. We numerically found
that in the convective regime an asymmetry is observed
between the amplitudes of the two frequencies of instabil-
ity [solid lines in Fig. 4(a)]. By increasing the pump power
to reach the absolute regime we observed the same feature
with an increase of the asymmetry [solid lines in Fig. 4(b)].
This asymmetry feature is a clear signature of the convec-
tive nature of the system since they disappear as soon as the
slope of the dispersion vanishes (�3 � 0) leading to a
perfect symmetric spectrum [dotted lines in Figs. 4(a)
and 4(b)]. Obviously, this is the case when the dispersion
curve of the fiber is perfectly flat but also when the pump
wavelength is very far from the zero dispersion wavelength
of the fiber. In this latter case, the frequencies of the
instabilities are close to the pump frequency so that we
can consider that the dispersion is almost the same for each
of them. Therefore, no significant asymmetry can be ob-
served as it has been reported in [18].

To evidence experimentally that our system is convec-
tive, we have used a pulsed pump to avoid stimulated
Brillouin scattering. The laser emits pulses of 5.5 ps dura-
tion with a 20 MHz repetition rate at 1556.1 nm. The fiber
ring cavity is composed of 59.5 m of dispersion shifted
fiber (�0’1552 nm) and 0.5 m of SMF28 (�0 ’ 1300 nm).
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FIG. 3. Evolution of a perturbation initially located at � �
0 ps and z � 0 (round-trip 0) evidencing (a),(c) a convective
regime, PP � 1:3 W, and (b),(d) an absolute regime, PP � 2 W.
Panels (a) and (b) are the ‘‘pseudospatiotemporal’’ slow-fast time
evolution maps. Panels (c) and (d) are the slow time evolutions
of this perturbation registered at � � 6:5 ps as indicated by the
vertical dashed lines in panels (a) and (b).

FIG. 4. Numerical solutions of Eqs. (1) and (2) showing the
impact of �3 on the output power spectra after 350 round-trips.
Solid (dotted) lines correspond to �3 � 1:2� 10�40 s3=m
(�3 � 0). (a) The convective regime, PP � 1:1 W, and (b) the
absolute regime, PP � 2 W. The pump wavelength is located at
1556.1 nm.
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At the laser operating wavelength 1556.1 nm, the aver-
age second-order dispersion value is approximately �2 �
�5� 10�28 s2=m and �3 � 1:2� 10�40 s3=m. By using
a set of an optical delay line and a piezoelectric stretcher
(manufactured by LEUKOS), it is possible to control the
fiber loop optical path with a submicron accuracy [19].
Care has been given to the synchronization between the
pump and the successive pulses having experienced one or
more round-trips since synchronization mismatch directly
drives the system to be convective [8]. An easy way to
achieve it experimentally consists in optimizing the finesse
of the cavity by fine-tuning the fiber length. Typical ex-
perimental output spectra are displayed in Fig. 5(c) near
above the convective threshold (solid line) and well above
it (dashed line). They clearly show an asymmetry between
the intensities of the two MI side lobes. As predicted
numerically for a cw pumping, the MI intensity asymmetry
increases with the pump power [Fig. 5(d)]. Numerical
simulations carried out for these experimental conditions
(pulsed pump plus noise) show a very good qualitative
agreement with experiments as can be seen in Figs. 5(a)
and 5(b). Thus, the signature found numerically to evi-
dence the convective nature of the system remains valid for
pulsed pumps and so forth is relevant. We then conclude
that a direct consequence of the symmetry breaking in our
fiber system is that it behaves as a convective system, and
this is not specific to our system but it is generic to all fiber
systems.

In summary, we have theoretically and experimentally
shown that, in a fiber ring cavity pumped by a pulsed laser,

the third-order dispersion term breaks the reflection sym-
metry and leads to the appearance of convective instabil-
ities. More generally, odd-order dispersion terms and the
Raman effect in fiber systems correspond to nonlocal terms
that make the fiber systems convective. The asymmetry
between the two lobes of modulational instability observed
in the output power spectrum of fiber systems is a signature
of convective instability. A striking feature revealed by our
study is that for high enough values of �3 and pulsed
pumping conditions, only noise-sustained modulational
instabilities can be observed.
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FIG. 5. (a),(c) Numerical and experimental output power spec-
tra for a pulsed pump of 5.5 ps duration. (b),(d) Power difference
between the maxima of the two side lobes of modulational
instability. (c),(d) Experimental recordings. (a),(b) Numerical
simulations taking into account noise. The integrated power
spectrum (a) is averaged over the last hundred round-trips to
reproduce the experimental averaging coming from the sweep
rate time of the optical spectrum analyzer.
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