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We calculate low moments of the leading-twist and next-to-leading-twist nucleon distribution ampli-

tudes on the lattice using two flavors of clover fermions. The results are presented in the MS scheme at a

scale of 2 GeVand can be immediately applied in phenomenological studies. We find that the deviation of

the leading-twist nucleon distribution amplitude from its asymptotic form is less pronounced than

sometimes claimed in the literature.
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Introduction.—Distribution amplitudes [1–6] describe
the structure of hadrons in terms of valence quark Fock
states at small transverse separation and are required in the
calculation of (semi)exclusive processes. A simple picture
is obtained at very large values of the momentum transfer.
For example, the magnetic Sachs form factor of the nu-
cleon GMðQ2Þ can then be expressed as a convolution of
the hard scattering kernel hðxi; yi; Q2Þ and the leading-
twist quark distribution amplitude in the nucleon
’ðxi; Q2Þ [3]:

GMðQ2Þ ¼ f2N

Z 1

0
½dx�

�
Z 1

0
½dy�’?ðyi; Q2Þhðxi; yi; Q2Þ’ðxi; Q2Þ

where ½dx� ¼ dx1dx2dx3�ð1�P
3
i¼1 xiÞ, and �Q2 is the

squared momentum transfer in the hard scattering process.
However, in the kinematic region 1 GeV2 <Q2 <
10 GeV2, which has attracted a lot of interest recently
due to the JLAB data [7,8] for GM, the situation is more
complicated. Here calculations are possible, e.g., within
the light-cone sum rule approach [9,10]. They indicate that
higher-twist distribution amplitudes become important
while higher Fock states do not play a significant role. In
any case, the distribution amplitudes are needed as input.

Being typical nonperturbative quantities, distribution
amplitudes are difficult to compute reliably in a model-
independent way. Determinations by QCD sum rules have
been attempted, but suffer from considerable systematic
uncertainties, especially for lower values of Q2. As advo-
cated in the pioneering work [11], lattice QCD can provide
valuable additional information.

In this Letter we present an improved and extended
lattice analysis of the nucleon distribution amplitudes.
We find that the asymmetry of the leading-twist amplitude
is smaller than in QCD sum rule calculations, in agreement
with phenomenological estimates [12,13], which suggest a
less asymmetric form.
General framework.—In the case of the proton, the

starting point is the matrix element of a trilocal quark
operator,
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fNfðp � �CÞ��ð�5NÞ�Vðzi � pÞ

þ ðp � ��5CÞ��N�Aðzi � pÞ þ ði���p
�CÞ��ð���5NÞ�

� Tðzi � pÞg þ higher twist; (1)

where path ordering is implied for the exponentials, a, b, c
are the color indices,N the proton spinor, and jpi denotes a
proton state with momentum p. We will consider this
matrix element for space-time separation of the quarks
on the light cone zi ¼ aiz (z

2 ¼ 0) and
P

iai ¼ 1.
In momentum space we have

VðxiÞ �
Z

Vðzi � pÞ
Y3
i¼1

exp½ixiðzi � pÞ�dðzi � pÞ2

(2)

with VðxiÞ � Vðx1; x2; x3Þ and similarly for AðxiÞ and
TðxiÞ. The distribution amplitudes VðxiÞ, AðxiÞ, and TðxiÞ
describe the quark distribution inside the proton as func-
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tions of the longitudinal momentum fractions xi. The de-
pendence on the renormalization scale is suppressed for
notational simplicity.

We consider the moments of distribution amplitudes,
which are defined as

Vlmn ¼
Z 1

0
½dx�xl1xm2 xn3Vðx1; x2; x3Þ; (3)

with analogous definitions for the other distribution ampli-
tudes. Using Eqs. (3) and (4) one can relate the moments of
the leading-twist nucleon distribution amplitudes to matrix
elements of the local operators

V ��l �m �n
� ð0Þ � V �ð�1����lÞð�1����mÞð�1����nÞ

� ð0Þ
¼ ½ilD�1 � � �D�luð0Þ�a�ðC��Þ��

�½imD�1 � � �D�muð0Þ�b�
�½inD�1 � � �D�n�5dð0Þ�c�	abc

by h0jV ��l �m �n
� ð0Þjpi ¼ �fNp

��l �m �nN�V
lmn with similar re-

lations [11] for the operators A��l �m �n
� and T ��l �m �n

� corre-
sponding to the moments Almn and Tlmn, respectively. Here
the multi-indices �l �m �n denote the Lorentz structure con-
nected with the covariant derivatives on the right-hand
side.

Because of the presence of two up-quarks in the proton
and isospin symmetry, the three different amplitudes can
be expressed in terms of the single amplitude ðxiÞ with
the corresponding moments

lmn ¼ 1
3ðVlmn � Almn þ 2TlnmÞ: (4)

The normalization constant fN is defined by the choice
000 ¼ 1. The moments of the combination ’ðxiÞ ¼
VðxiÞ � AðxiÞ, usually used in sum rule calculations, can
easily be obtained as ’lmn ¼ 2lmn �nml. In the nu-
merical calculation, however, we prefer the combination
lmn as the corresponding statistical errors are smaller by a
factor of about 3. Note that momentum conservation im-
plies

lmn ¼ ðlþ1Þmn þlðmþ1Þn þlmðnþ1Þ: (5)

In particular we have

1 ¼ 100 þ010 þ001

¼ 200 þ020 þ002 þ 2ð011 þ101 þ110Þ: (6)

In the limit of Q2 ! 1 one gets ðxiÞ ¼ 120x1x2x3 [4]
and the moments lmn are known exactly: 100 ¼ 010 ¼
001 ¼ 1=3, 200 ¼ 020 ¼ 002 ¼ 1=7, and 011 ¼
101 ¼ 110 ¼ 2=21. Thus asymmetries of the type
100 �010 are important quantities at low energies as
they describe the deviation from the asymptotic case.

In the case of the next-to-leading-twist distribution am-
plitudes we restrict ourselves to operators without deriva-
tives, i.e., to the lowest moments. Thus the problem is
simplified greatly since the Lorentz decomposition of the

relevant matrix element involves only two additional con-
stants �1 and �2 [14]. They describe the coupling to the
proton of two independent proton interpolating fields used
in QCD sum rules. One of the operators,L�, was suggested
in [15] and the other, M�, in [16]:

L �ð0Þ ¼ 	abc½uaTð0ÞC��ubð0Þ�ð�5��d
cð0ÞÞ�;

M�ð0Þ ¼ 	abc½uaTð0ÞC���ubð0Þ�ð�5���d
cð0ÞÞ�:

Their matrix elements are given by

h0jL�ð0Þjpi ¼ �1mNN�; h0jM�ð0Þjpi ¼ �2mNN�:

Computation.—The required matrix elements between
the vacuum and the proton state are extracted from two-
point correlation functions with the investigated local op-
erators at the sink and a smeared interpolating operator for
the proton at the source. In addition one needs the usual
proton correlator with both source and sink smeared. We
have evaluated these two-point functions on gauge field
configurations generated by the QCDSF and DIK collabo-
rations with the standard Wilson gauge action and two
flavors of nonperturbatively improved Wilson fermions
(clover fermions). The gauge couplings used are � ¼
5:29 and � ¼ 5:40 corresponding to lattice spacings a �
0:075 fm and a � 0:067 fm via a Sommer parameter of
r0 ¼ 0:467 fm [17,18]. Our smallest pion masses are
380 MeV (� ¼ 5:29) and 420 MeV (� ¼ 5:40), while
the spatial lattice sizes L are such that m
L � 3:7.
Because of the discretization of space-time, the mixing

pattern of the operators on the lattice is more complicated
than in the continuum. It is determined by the transforma-
tion behavior of the operators under the (spinorial) sym-
metry group of our hypercubic lattice. As operators
belonging to inequivalent irreducible representations can-
not mix, we derive our operators from irreducibly trans-
forming multiplets of three-quark operators [19] in order to
reduce the amount of mixing to a minimum. These irre-
ducible multiplets constitute also the basis for the renor-
malization of our operators, which is performed
nonperturbatively in a scheme like the regularization-
independent momentum subtraction (RI-MOM) method.
We use continuum perturbation theory and the renormal-
ization group to convert the results to the modified minimal

subtraction (MS) scheme at a scale of 2 GeV. The corre-
sponding uncertainty is estimated by varying the scale at
which our renormalization condition is imposed between
10 GeV2 and 40 GeV2. In this procedure, the mixing with
‘‘total derivatives’’ is automatically taken into account.
In the case of the moments considered in this Letter we

can avoid the particularly nasty mixing with lower-
dimensional operators completely. Note that the operators

V ��l �m �n
� , A��l �m �n

� , and T ��l �m �n
� with different multi-indices

��l �m �n but the same lmn are related to the same moments
Vlmn, Almn, and Tlmn, and we make use of this fact not only
in order to minimize the mixing problems but also in order
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to reduce the statistical noise by considering suitable linear
combinations.

For the operators without derivatives, i.e., the matrix
elements �1, �2, and fN, we have performed a joint fit of
all contributing correlators to obtain the values at the
simulated quark masses. As these are larger than the physi-
cal masses a chiral extrapolation to the physical point is
required in the end. To the best of our knowledge there are
no results from chiral perturbation theory to guide this
extrapolation. Therefore we have adopted a more phe-
nomenological approach aiming at linear (in m2


) fits to
our data. It turns out that the ratios fN=m

2
N and �i=mN are

particularly well suited for this purpose [see Fig. 1 (upper
panel) for an example]. In order to estimate the systematic
error due to our linear extrapolation, we also consider a
chiral extrapolation including a term quadratic in m2


 and
take the difference as the systematic error. The results in

the MS scheme at a scale of 2 GeV are given in Table I.
Note that 2�1 � ��2, a relation that is expected to hold in
the nonrelativistic limit due to Fierz identities.

For the higher moments one can proceed in the same
way and the constraint (6) is satisfied very well. However,
the statistical errors in this approach are too large to allow
an accurate determination of the (particularly interesting)
asymmetries. We achieved smaller errors by calculating
the ratios Rlmn ¼ lmn=Si where S1 ¼ 100 þ010 þ
001 for lþmþ n ¼ 1, and S2 ¼ 2ð011 þ101 þ
110Þ þ200 þ020 þ002 for lþmþ n ¼ 2. These ra-
tios can be extrapolated linearly to the physical masses. An
example is shown in Fig. 1 (lower panel) for the case of the
asymmetry R200 � R020. Requiring that the constraint (6)
be satisfied for the renormalized values we can finally
extract the moments from the ratios.

Discussion and conclusions.—Since we only have re-
sults at two different lattice spacings, we are unable to
extrapolate our results to the continuum limit. However, we
find that the results obtained at � ¼ 5:29 and � ¼ 5:40 are

compatible within errors. Hence we take the data from our
finer lattice (� ¼ 5:40) as our final numbers. The values
for lmn imply that ’100 ¼ 0:394, ’010 ¼ 0:302, and
’001 ¼ 0:304. These moments can be interpreted as the
fraction of momentum carried by the corresponding quarks
[5,6]. Thus we find that the largest fraction of the proton
longitudinal momentum is carried by one up-quark with
spin aligned with the proton spin. However, this asymme-
try is not as strong as found in the QCD sum rule calcu-
lation. Our results for the first moments are close to
phenomenological estimates [12,13]; cf. Table II. On the
other hand, our results for ’011, ’101, and ’110 are similar
to the sum rule values, while the asymmetries in the mo-
ments ’200, ’020, and ’002 are clearly smaller.
Let us now expand the distribution amplitude in terms of

polynomials Pn to order N ¼ 2 chosen such that the mix-
ing matrix is diagonal [21,22]:

’ðxi; �Þ ¼ 120x1x2x3
XN
n¼0

cnð�0ÞPnðxiÞ
�
�sð�Þ
�sð�0Þ

�
!n

:

Calculating the coefficients cnð�0Þ from an independent

FIG. 1 (color online). Linear chiral extrapolation of bare lat-
tice results for fN=m

2
N (upper panel) and the asymmetry R200 �

R020 (lower panel) with one-� error band.

TABLE I. Moments and asymmetries in the MS scheme at
2 GeV for lmn ¼ ðVlmn � Almn þ 2TlnmÞ=3. The first error is
statistical; the second (third) error represents the uncertainty due
to the chiral extrapolation (renormalization). The systematic
errors should be considered with due caution; see the text for
their determination.

� ¼ 5:29 � ¼ 5:40

fN ð103 GeV2Þ 2.984(60)(157)(65) 3.144(61)(29)(54)

��1 ð103 GeV2Þ 39.69(76)(259)(124) 38.72(70)(43)(106)

�2 ð103 GeV2Þ 78.70(155)(562)(245) 76.23(139)(84)(207)

100 0.3549(11)(61)(2) 0.3638(11)(68)(3)

010 0.3100(10)(73)(1) 0.3023(10)(42)(5)

001 0.3351(9)(11)(2) 0.3339(9)(26)(2)

100 �001 0.0199(23)(46)(4) 0.0300(23)(93)(1)

001 �010 0.0251(16)(84)(3) 0.0313(17)(12)(7)

011 0.0863(23)(97)(74) 0.0724(18)(82)(70)

101 0.1135(23)(3)(33) 0.1136(17)(32)(21)

110 0.0953(21)(58)(31) 0.0937(16)(3)(38)

200 0.1508(38)(213)(64) 0.1629(28)(7)(68)

020 0.1207(32)(43)(56) 0.1289(27)(37)(51)

002 0.1385(36)(47)(64) 0.1488(32)(77)(73)

110 �011 0.0075(33)(69)(44) 0.0211(27)(78)(32)

101 �110 0.0172(29)(82)(57) 0.0204(21)(134)(50)

200 �020 0.0335(43)(26)(78) 0.0321(33)(69)(55)

002 �020 0.0170(36)(8)(56) 0.0193(24)(32)(42)

TABLE II. Comparison of our lattice results (LAT) to selected
sum rule results [20] (QCDSR) and the phenomenological
estimates [12] (BLW) and [13] (BK) at the scale 2 GeV.

LAT QCDSR BLW BK

V001 0.304 0.248 0.303 0.311

2A010 0.091 0.303 0.116 0.064
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subset of the moments lmnð�0 ¼ 2 GeVÞ, we obtain a
model function for the distribution amplitude presented in
Fig. 2. While the (totally symmetric) asymptotic amplitude
120x1x2x3 has a maximum for x1 ¼ x2 ¼ x3 ¼ 1=3, inclu-
sion of the first moments (i.e., choosing N ¼ 1) moves this
maximum to x1 � 0:46, x2 � 0:27, x3 � 0:27 giving the
first quark substantially more momentum than the others.
The second moments then turn this single maximum into
the two local maxima in Fig. 2. The approximate symmetry
in x2 and x3 is due to the approximate symmetry ’lmn �
’lnm of our results. It is also seen in QCD sum rule
calculations as well as in several models such as Braun-
Lenz-Wittmann (BLW) and Bolz-Kroll (BK) and may
indicate the formation of a diquark system. To illustrate
the statistical uncertainty we show in Fig. 3 the profile of ’
at x3 ¼ 0:5 and the corresponding error band. Note that
higher-order polynomials have been disregarded in this
model and thus Figs. 2 and 3 should be interpreted with
due caution.

In order to establish a link to observable quantities we
are calculating nucleon form factors using light-cone sum
rules. As our moments are close to the phenomenological
estimates shown in Table II we can expect reasonable

agreement with the experimental data. It is, however, to
be stressed that these calculations still involve some model
dependence, while the moments presented in this Letter
were obtained from first principles.
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FIG. 2 (color online). Barycentric contour plot of the leading-
twist distribution amplitude ’ðx1; x2; x3Þ at � ¼ �0 ¼ 2 GeV as
obtained from the moments in Table I. The lines of constant x1,
x2, and x3 are parallel to the sides of the triangle labeled by x2,
x3, and x1, respectively.

FIG. 3 (color online). The model distribution amplitude
’ðx1; x2; x3Þ for x3 ¼ 0:5 as a function of x1 with statistical
errors.
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