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We propose and study methods for detecting Unruh-like acceleration radiation effects in a Bose-

Einstein condensate in a (1þ 1)-dimensional setup. The Bogoliubov vacuum of a Bose-Einstein

condensate is used to simulate a scalar field theory, and accelerated atom dots or optical lattices serve

as detectors of phonon radiation due to acceleration effects. In particular, we study the dispersive effects of

the Bogoliubov spectrum on the ideal case of exact thermalization. Our results suggest that acceleration

radiation effects can be observed using currently accessible experimental methods.
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One of the surprising fundamental consequences of
relativistic quantum field theory is the dependence of the
concept of particle number on the observer’s state of
motion. While inertial observers see the vacuum as empty,
noninertial observers generally perceive this vacuum as
populated with particles. Unruh [1] showed that a uni-
formly accelerated particle detector perceives the field in
vacuum as a thermal state with temperature kBTU ¼
@a=2�c, where a is the proper acceleration. The Unruh
effect is related to other particle creation effects in curved
space-time, such as Hawking radiation and the Gibbons-
Hawking cosmological thermalization effect [2]. Numer-
ous experimental ideas for detecting the effect have been
suggested. They include intense laser induced electron
acceleration [3] and the passage of atoms through a cavity
[4]. An expanding Bose-Einstein condensate (BEC) [5] or
linear ion trap [6] have been proposed for detecting the
Gibbon-Hawking effect [7].

In this Letter we propose to simulate and detect Unruh-
like acceleration effects using atom dots (AD) [8] or opti-
cal lattices accelerated in a BEC. Since the relevant veloc-
ity for the Unruh temperature is the speed of sound,
cs�1mm=s, we find TU�1 nKs2=m�am=s2. Currently
feasible accelerations of optical lattices may reach a �
5� 105 m=s2 so that the Unruh temperature can be sig-
nificantly higher than the relevant energy scales, the AD
minimal energy gap (!AD � 100 Hz � 1 nK), and the
BEC temperature.

Let us begin by recalling some features of the Unruh
effect. A detector is modeled as a localized system with
internal levels jgi and jei ¼ �þjgi and energy gap !d (we
use @ ¼ 1), which moves along a trajectory xDð�Þ and tð�Þ,
where � is the detector’s proper time. In the simplest case, a
free scalar field �, initially in its vacuum state, couples
with the detector through

Hint ¼ gðei!d��þ þ e�i!d���Þ�ðxDð�Þ; tð�ÞÞ: (1)

By evaluating the transition amplitudes between the levels,
it is then found that for inertial trajectories the detector

remains unexcited, while for uniformly accelerated tra-
jectories the detector becomes thermalized. This can be
seen by evaluating the transition amplitudes to the low-

est order in g. Inserting xDð�Þ ¼ c2

a cosha�c , tð�Þ ¼ c
a �

sinha�c , and the expression for a free field �ðx; tÞ in

Eq. (1), one finds that a field mode ! has a time depen-

dent coupling of the form geð�;!Þ ¼ expði !ca e�ða�=cÞÞ.
This readily yields transition probabilities which satisfy

Pexcitation=Pde-excitation ¼ e�!d=kBTU .
It is important to note the following: (i) The appearance

of the effective coupling geð�;!Þ is sufficient in order to
thermalize the detector. A similar coupling is also a land-
mark of the Hawking and cosmological thermalization
effects. (ii) In the Unruh effect, property (i) is a direct
consequence of the detector’s accelerated motion. This can
be easily seen [9] by noticing that the field mode ! is
Doppler shifted in the detector’s rest frame to !0ð�Þ ¼
!0

1�v=cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðv=cÞ2

p ¼ !0e
�a�=c. Therefore, the relevant collected

phase factor becomes expðiR!ð�Þd�Þ ¼ geð!; �Þ.
(iii) The Unruh effect is manifestly relativistic. Hence the
interaction (1) is defined in the detector’s rest frame, and

the trajectory xDRðtÞ ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ c2=a2

p
coincides with non-

relativistic acceleration only for short times.
The above points quantify, with increasing refinement,

important aspects of the Unruh effect, which one wishes to
simulate in a specific model. For example, (i) can be
obtained by modifying the vacuum normal mode frequen-

cies ! to !ðtÞ ¼ !e�ðat=cÞ, as proposed for an ion trap by
changing the trap frequency [6], or by an expanding BEC
[5]. In what follows we suggest a model that incorporates
properties (i) and (ii), and finally shortly discuss possible
realizations of (iii).
It is well known that small perturbations of the BEC

Schrödinger field satisfy a relativisticlike Klein-Gordon
equation with the speed of sound cs playing the role of c
[10]. Nevertheless, the transformation laws for a moving
detector will remain nonrelativistic. We can therefore ob-
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tain the effective coupling constant (i) as a consequence of
nonrelativistic Doppler shift by choosing a modified tra-

jectory: xDeffðtÞ ¼ ðcstþ c2s
a e

�at=csÞ, which differs from the

relativistic trajectory xDRðtÞ above (when c ¼ cs), by
Oða2t3=csÞ for short times and Oðc2s=a2tÞ for long times.

The Doppler shift !0 ¼ !0ð1� v=csÞ ¼ !0e
�at=cs of the

right moving phonons has the same time dependence as in
the relativistic case, with �! t. The left moving phonons
will acquire a non-Unruh–like Doppler shift, but since the
interaction with these phonons is off resonant their effect
would be negligible. We hence expect that a detector that
moves along xDeff will be thermalized.

Consider then a setup with hyperfine levels a and d,
where a forms a condensate described by the field�. Level
d will be used for an AD produced by a localized potential
Vd [8,11] or by an optical lattice. It will be sufficient to
consider only one level with a wave function  dðxÞ and the
creation and destruction operators d and dy. Since Vd
affects only atoms in the state d, in the absence of further
coupling with the condensate, moving about Vd will not
disturb the condensate state. We need, however, to make
sure that nonadiabatic excitations of the AD are negligible.
The adiabatic condition in this case can be derived by
examining the extreme case for which the velocity changes
abruptly from zero to cs. In the frame of the harmonic
oscillator the atom receives an energy ofmc2s=2, which is 2
orders of magnitude smaller than @!d [12]. Atomic levels
then couple through elastic collisions gijninj, where gij is

the interaction strength between state i and j of the atom.
This interaction to lowest order redefines the detector’s
energy gap, producing self-interaction terms gddd

ydydd,
where dy is the operator that creates an atom in state d and
displaces the field, but this displacement is negligible since
the number of modes is large and the population of the
detector would be chosen to be of the order of 1. A large
gdd is used [8] to simulate a two-level detector [Eq. (1)]. In
the following we found it more convenient to assume small
gdd; hence the detector is a harmonic oscillator and we
disregard elastic collisions from now on. Since the Unruh
effect is unaffected by the nature of the detector, by using a
harmonic oscillator we obtain a solvable model and still
find the Unruh result.

We couple the AD and the BEC by laser induced Raman
transitions described by interaction Hamiltonian

Hint ¼ �dydþ�a

Z
dx dðxÞ½dy�ðxÞ þ H:c:�; (2)

where �a is the Rabi frequency, � is the laser detuning,
 dðxÞ the ground state wave function of the AD, and �ðxÞ
is the annihilation operator of an atom in state a at location
x in the BEC. At first sight Eq. (2) lacks the number of
nonconserving terms of Eq. (1), which are essential to the
effect. However, our interest is in the resulting coupling
with phonons. Using Bogoliubov theory we expand the
field operator

�̂ðxÞ ¼ �ðxÞ þX
k

ukðxÞe�i!ktck þ vkðxÞeþi!ktcy�k; (3)

where �ðxÞ is a c number, ukðxÞ and vkðxÞ are the phonon
mode functions, and ck their annihilation operators. This

brings the BEC Hamiltonian to a free field form HBEC ¼P
k!kc

y
k ck and the spectrum !k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcskÞ2 þ ð k22mÞ2

q
that is

‘‘relativistic,’’ ! � k, for k < kc ¼ mcs=@.
Inserting Eq. (3) into Eq. (2), and assuming that  dðxÞ

extends over scales smaller than the phonon wavelength
(the dominant coupling arises from long wavelengths), we
obtain

Hint¼�dydþ ffiffiffiffiffi
na

p
�aðdþdyÞþ

ffiffiffiffi
ld

p
�ad

y

�X
k

ðukðxDÞe�i!ktckþvkðxDÞei!ktcy�kÞþH:c:; (4)

where na and ld are the effective number of condensate
atoms at the AD and the size of the wave function  d. For
k� kc, uk � vk, the last term coincides with Unruh’s
detector model Eq. (1). The second term

ffiffiffiffiffi
na

p
�aðdþ dyÞ

describes an additional interaction with the mean field,
which can be eliminated using a two mode condensate
with levels a and b that couple as in Eq. (2) via Raman
transitions and with Rabi frequencies satisfying �a ¼
��b. A cancellation of the two terms is then obtained
via the symmetry of the Hamiltonian. Alternatively, one
can use a single mode condensate and remove the resulting
displacement in the AD final state by applying the unitary

exp½
ffiffiffiffi
na

p
�

2�2
ðd� dyÞ�. This approach requires a precise con-

trol of
ffiffiffiffiffi
na

p
[13].

Consider the effect of Hint on the AD when the conden-
sate is in its ground state: ck;�jBECi ¼ 0. For uniform

motion x ¼ vt, the excitation amplitude is to first order:

i
Z T

�T
dt
X
k

vkðxDðtÞÞei½!dþð1�v=csÞ!k�tT ! 1�����������!X
k

�ð!d þ ð1� v=csÞ!kÞ:

Therefore as long as v < cs, the detector remains unex-
cited. For the suggested noninertial trajectory xD, and for
positive momentum modes with !<!c, vkðxÞ � ukðxÞ �
expðikxÞ, and the transition amplitudes reduces to A�ð!Þ ’
�a /

R
T
�T expð�i!dt� i!kc=ae

�at=cÞdt. This coincides
with Unruh’s expressions, with t replacing �. Modes with

!>!c (the cutoff frequency) will give rise to a deviation

from Unruh’s result.

The contribution to the transition probability arises

mostly from the saddle point around the time t �
tsð!Þ � cs

a log!=!d � 1ffiffiffiffiffiffiffiffiffiffiffiffi
!da=cs

p [14], and is given for
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modes with !<!c by jA�j2 ¼ �2
að�2�cs=!daÞ�

½expð�2�c!d=aÞ � 1��1, which is independent of !.
Since each mode effectively interacts with the AD at
tsð!Þ, it is possible to avoid the unwanted effect of modes
with !>!c by limiting the duration of the experiment to
T < tsð!cÞ. Then the total transition rate depends on the
number of contributing modes Nc, the number of modes
with !<!c, and is given by R� ¼ NcjA�j2=Tc, where
Tc ¼ tsð!cÞ. This term scales with a as the Bose-Einstein
distribution.

It is important to note that the switching on and off of the
laser for finite time also modifies the transition amplitude.
In the simplest case of abrupt change in the coupling, the
full transition probabilities can be approximated as

P�ð!Þ � jA�ð!Þ þ 1
i!d
e	i!dtsð!Þj2. Since different modes

contribute at different times, the total contribution is effec-
tively averaged and P� / jA�j2 þ 1

!2
d

. The correction does

not decrease with the energy gaps since jA�j2 scale as
ð!daÞ�1. More generally we shall assume that the coupling
starts and ends smoothly over a time scale � by adding a
regulator e�t=�, i.e., a slow decoupling function. It is im-
portant to note that the manipulating laser creates a stark
shift of the order of �2

a=�; this stark shift is changed once
the dot is present. Thus, a moving perturbing potential is
created. This perturbing potential has to create phonons at
a slower rate than the Unruh thermalization. This regime is
achieved if the size of the dot is much smaller than the in-
terparticle distance. Since the size of the dot is the size of
the ground state which can be of the order of tens of nm,
this requirement can be achieved for most experimental
setups.

In the following we have assumed that the detector is
accelerated for time T and that the experiment is repeated n
times by moving the AD back and forth in the BEC. We
have studied numerically a BEC with a finite number of N
phonon modes and described the detector by a harmonic
oscillator. The total state is then Gaussian and fully char-
acterized by its covariance matrix, and the population and
temperature of the detector are derived from the reduced
covariance matrix of the AD [15].

We first considered the idealized case with kc ! 1. As
is shown in Fig. 1 the effective temperature of the detector
changes gradually until it reaches a final steady state after
n� 100 repetitions. A large number of repetitions in
needed since the time of each repetitions has to be short
to avoid interaction with high frequency !>!c, single
particle modes. The temperature is slightly higher than the
value of TU since the finite decoupling time and the final
coupling strength increase the average final energy of the
steady state. With increasing � we can approach the theo-
retical value of TU. We have checked the final temperature
for various values of the detector energy gaps, and the
temperature remained unchanged in agreement with a
thermal distribution, up to fluctuations of �T=T � 1%.
The fluctuations are due to the finiteness of the number
of modes and the interaction time.

Next we extended the analysis to the full problem with
a finite cutoff scale !c ¼ cskc, which corresponds in a
realistic BEC to more than 10 kHz and is 2 orders of
magnitude larger than the minimal energy gap of the AD,
which is limited by the fluctuations of the laser. There are
two types of corrections. The first type is due to the
changing dispersion relation; since the phase in the tran-

sition amplitude is now given by e�i!dteiðkx�!tÞ ¼
e�i!dteiðckt�cke�at=a�!ðkÞtÞ ¼ e�i!dteiððck�!ðkÞÞt�cke�at=aÞ, the
detector’s energy gap is corrected by ck�!ðkÞ, which is
always a negative quantity. For certain modes the effective
detector gap can vanish, which implies a divergence in the
resulting partial excitation probability. For higher modes
the effective energy gap may then become negative, which

causes a gradual population inversion since P� ¼ 2�cs
�!da

�
1

e�2�!dc=a�1
, the ratio for large frequency tends to unity. This

cutoff effect would be felt once !d ¼ ck�!ðkÞ, which is
smaller than the field cutoff. The second type of correction
comes from the modified momentum dependence of mode
functions uk and vk. As k increases, vk decreases to zero;
hence for T > tc the temperature starts decreasing.
In order to observe the Unruh effect, we can reduce the

effects of the above ‘‘ultrahigh’’ frequency corrections by
selecting a sufficiently short time scale. Figure 2 displays
the resulting final temperature for a numerical computation
which includes all Bogoliubov theory corrections. The
expected thermalization effect can be observed but due to
the shorter interaction time requires a slightly higher num-
ber of repetitions, n� 300. In order to decrease the number
of repetitions the initial state may be chosen close to the
final temperature. Note that this choice does not affect the
limiting temperature, as this is unique. In case a higher
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FIG. 1 (color online). Thermalization of an oscillator as a
function of the smearing time �. The field is modeled by 20
modes, a ¼ 2, !d ¼ 1, and the coupling is �a ¼ 1=50. The
green squares are numerical results described in the text, and the
solid blue line is derived by integration of the transition ampli-
tudes A�ð!Þ. The inset shows the thermalization curve for � ¼
17, where the red (medium gray) line shows the theoretical
limiting temperature. The blue (light gray) and green (dark
gray) graphs shows the cooling and the heating curves. The
results are in units of !d. The thermal nature of the result is
checked by calculating the trace norm distance between the final
density matrix and the closet thermal state.
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initial temperature is given, the Unruh effect would result
in cooling, as shown in the insets of Figs. 1 and 2. To avoid
finite temperature corrections, we need to have the phonon
number in the relevant interacting modes to be smaller than
1. For a BEC temperature of 50 nk this requires to start the
interaction by tailoring the path at 1 kHz or an energy gap
of this scale. It is important to stress that this proposal
could only work in case state dependent potentials are
realized; if the potential is only semistate dependent then
the movement of the AD will excite the BEC resulting in
non-Unruh excitations in the detector.

The measurement of the temperature could be realized
by measuring the number of atoms in the d state using state
selective resonance fluorescence detection [16] via quan-
tum jump detection [17], which is highly efficient. It is
important to stress that the measurement can be done at the
end of the experiment after the coupling is switched off and
the detector is fixed and if preferable experimentally is
located far from the BEC.

The orders of magnitude are the following. The energy
gap (detuning) can be between a minimal value of 100 Hz,
which is limited by experimental precision, to a value of
1 kHz, which is limited by the field cutoff which is of the
order of tens of kHz. The Rabi frequency �a should be no
more than 0:1� and thus scales between 10 and 100 Hz.
Assuming Unruh temperature of the order of the energy
gap a maximum acceleration of 1 to 10 m=s2 is required.
The time of each repetition is then between 0.6 and 6 ms.
This means that the rates for large BEC and strong cou-
pling should be of the order 400 Hz, and these would
decrease for smaller BEC and weaker couplings. The
number of repetitions varies from a few hundreds to few
repetitions depending on the size of the BEC and the
required precision (the coupling strength).

The proposed scheme would only give the required
results in a 1� d setting or in an elongated BEC for which
the radial frequency is small enough not to interact with the
detector. For higher dimensions the effective path we chose
would not produce the correct relativistic behavior and the
final temperature would be different to the Unruh tempera-
ture. Nevertheless, such an experiment would still have the
potential to demonstrate the inequivalence of physical
vacua for noninertial observers. We remark that a full
relativisticlike realization may be achieved by choosing

� ¼ 0 in Eq. (2). This yields the HamiltonianHr � �ðtÞ�
½�ðdþ dyÞ þ ðd� dyÞPkukðbk � byk Þ� � �H0, for k <
kc. We can then set the overall factor �ðtÞ by shaping the
laser intensity: �ðtÞ / d�

dt ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2þc2s=a2

p . Since
R
Hrdt ¼R

H0d�, this effectively recovers the Unruh effect for a

uniformlike accelerating trajectory.
In conclusion, we found that a moving AD or an atomic

lattice in a condensate can be used to detect acceleration
radiation effects that are analogous to the Unruh effect. Our
results indicate that the measurability of such effects is
within reach of current methods. We hope that the analogy
that we are drawing may also be useful to interpret what
happens when one moves a particle in a condensate with
some acceleration.
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FIG. 2 (color online). The final temperature using the full
Bogoliubov theory, as a function of the interaction time t0
(with � ¼ 0). The ratio of the energy gap and the cutoff energy
was taken as 1:500; hence deviations due to the effective energy
gap are expected for ! 
 120!d. This corresponds to accelera-
tion times t0 � 1=a log120 � 2:4. Indeed, the theoretically pre-
dicted temperature, T � 0:67, is obtained in this simulation for
t < t0.
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