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We study the thermal diffusion coefficient DT of a charged colloid in a temperature gradient, and find

that it is to a large extent determined by the thermoelectric response of the electrolyte solution. The

thermally induced salinity gradient leads in general to a strong increase with temperature. The difference

of the heat of transport of coions and counterions gives rise to a thermoelectric field that drives the colloid

to the cold or to the warm, depending on the sign of its charge. Our results provide an explanation for

recent experimental findings on thermophoresis in colloidal suspensions.
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Introduction.—Colloidal suspensions in a nonuniform
electrolyte show a rich and surprising transport behavior.
Upon applying an electric field or a chemical or thermal
gradient on a macromolecular dispersion, one observes
migration of its components and a nonuniform distribution
in the stationary state. The physical mechanisms of electro-
phoresis and diffusiophoresis are well understood [1,2] and
widely used in biotechnology and microfluidic applica-
tions [3,4].

The situation is less clear concerning transport driven by
a thermal gradient. There is no complete description for the
underlying physical forces, and even the sign of the ther-
mophoretic mobility lacks a rationale so far. It has been
known for a while that in some colloidal suspensions the
particles move to the cold, and in others to the warm,
corresponding to a positive and negative Soret effect,
respectively [5–7]. Recent experiments on aqueous solu-
tions of lysozyme protein [8,9], polystyrene beads [9–12],
micelles [11], DNA [13], and Ludox particles [14] revealed
a surprisingly similar temperature dependence in the range
T ¼ 0 �C–80 �C. In all cases, an inverse Soret effect oc-
curs at low T, changes sign at some intermediate value T�,
and seems to saturate above 50 �C. On the other hand, a
large negative thermophoretic mobility has been reported
for charged latex spheres in a buffered solution at weak
acidity and low salinity [10]; adding LiCl or NaCl results in
a change of sign and a transport velocity that depends
significantly on the cation. These features strongly suggest
a single mechanism related to the electric properties of the
colloid; the relevance of the thermoelectric effect for col-
loidal suspensions has been pointed out recently [10].

A thermal gradient modifies the solute-solvent interac-
tions and drives the particle at a velocity [15]

u ¼ �DTrT; (1)

the coefficientDT being of the order of�m
2=Ks. Like any

linear transport coefficient in a viscous fluid, the thermo-
phoretic mobility DT has to be evaluated by equilibrating
the forces exerted by the particle on the surrounding fluid

with the dissipative stress; the hydrodynamic treatment is
well known, in terms of Stokes’ equation with boundary-
layer approximation [16–21].
This Letter deals with a nonuniform electrolyte solution.

We start by showing how the Soret effect of the mobile ions
leads to a salinity gradient and a macroscopic thermo-
electric field [22,23]. Then we add charged colloidal par-
ticles and study how their thermal diffusion coefficient DT

depends on the electrolyte Soret and thermoelectric effects.
Consider an electrolyte with monovalent ions of charge

qi ¼ zie and densities ni. The current of each species,

J i ¼ �Di

�
rni þ ni

Q�
i

kBT
2
rT � ni

qiE1
kBT

�
; (2)

comprises normal diffusion with the Einstein coefficient
Di, thermal diffusion with the ionic heat of transport Q�

i ,
and an electric-field term. In the stationary state Ji ¼ 0,
one observes a gradient of the overall electrolyte strength
n0 ¼ 1

2

P
ini and a thermoelectric field E1. Both are well-

defined macroscopic quantities, whereas the corresponding
charge separation �1 ¼ P

iqini varies with the inverse
system size and thus is negligible [22,23]. With

P
iJi ¼ 0

and �1 ! 0 one readily obtains the salinity gradient

rn0
n0

¼ ��rT
T
; (3)

where the reduced Soret coefficient � of the electrolyte
solution is given by the mean heat of transport

� ¼ X
i

�i
ni
n0
; �i ¼ Q�

i

2kBT
: (4)

The thermoelectric field is calculated from the condition of
zero electrical current

P
iqiJi ¼ 0; taking �1 ! 0 one

finds [23]

eE1 ¼ ��kBrT; (5)

with the dimensionless coefficient
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�� ¼ X
i

zi�i
ni
n0
: (6)

These relations are readily generalized to higher valencies;
for a binary electrolyte they reduce to � ¼ �þ þ �� and
�� ¼ �þ � ��. The origin of the field E1 is similar to
thermoelectricity in metals, where the Seebeck coefficient
is defined as the ratio of induced voltage � 1 and tem-
perature difference; with typical values Q�

i � kJ=M [24]
one finds � 1=�T � 100 �V=K. In dilute electrolyte
solutions, the ionic heat of transportQ� arises from specific
hydration effects [22]; at salt concentrations beyond a few
mM=l electrostatic interactions become important and re-
sult in intricate dependencies on temperature and salinity
[25–27].

Force density.—Now we consider a suspended colloidal
particle of radius a and surface charge density e�. Because
of the applied thermal gradient, the permittivity " and the
Debye length � vary along the particle surface, and so do
the electric potential  , the field E ¼ �r , and the ion
densities in the boundary layer. The electric forces lead to a
relative velocity v of the charged fluid in the vicinity of the
particle, with additional ion currents �Ji ¼ �niv�
Diðr�ni � �niqiE=kBTÞ. Typical velocities v��m=s
correspond to very small Peclet numbers Pe ¼ va=Di �
1; thus the convection term �nivmay be neglected, and the
excess ion densities �ni in the boundary layer are given by

Poisson-Boltzmann theory, �ni ¼ niðe�qi =kBT � 1Þ,
where ni describe the pure electrolyte discussed above.

The local charge and excess ion densities read � ¼
�2en0 sinh ̂ and n ¼ 2n0ðcosh ̂� 1Þ, with  ̂ ¼
e =kBT.

Thus calculating the thermophoretic mobility reduces to
the hydrodynamics in the charged double layer [2]. The
fluid motion is described by Stokes’ equation �r2v ¼
rðP0 þ nkBTÞ � f0, where � is the solvent viscosity and

P0 its pressure. The force density f0 ¼ �ðEþ ~E1Þ �
1
2E

2r" consists of a charge term with local and macro-

scopic electric fields, and a dielectric term [28]. (Typical
values E� 107 V=m and E1 � 102 V=m imply E1 � E.)
Rewriting Stokes’ equation as �r2v ¼ rP0 � f and spell-
ing out the gradients in f ¼ f0 � rðnkBTÞ, one finds

f ¼ �ð� þ nkBTÞrTT � E2

2
r"þ nkBT

rn0
n0

þ �~E1:

(7)

Note that the force density arises from the slowly varying
macroscopic solvent parameters T, ", n0, and the thermo-

electric field ~E1. The permittivity of water being much

larger than that of the particle, "� "P, it modifies ~E1
close to the interface and, in particular, enhances the
parallel component ~E1 ¼ 3

2E1.
Following standard arguments [2], we solve Stokes’

equation in boundary-layer approximation, that is, for
particles larger than the Debye length �� a. With local
coordinates x and z parallel and perpendicular to the sur-

face, the force balance in normal direction reads @zP0 �
fz ¼ 0. The normal force vanishes, fz ¼ 0, implying con-
stant P0. Integrating the equation for the parallel compo-
nent �@2zvx þ fx ¼ 0 with Stokes boundary conditions,
one finds the fluid velocity well beyond the charged layer,

vB ¼ 1

�

Z 1

0
dzzfx: (8)

In the laboratory frame, the fluid is immobile at infinity,
and the particle moves in the opposite direction with the
average boundary velocity, u ¼ �hexvBi [2].
All forces in (7) are proportional to the parallel compo-

nent Tx ¼ @xT of the thermal gradient. Inserting the re-
duced Soret and Seebeck coefficients � and �� and
rewriting @x" in terms of the logarithmic derivative � ¼
�d ln"=d lnT, we obtain

fx ¼
�
�"E2

2kBT
� � 

kBT
þ ð�� 1Þnþ 3

2
��

�

e

�
kBTx: (9)

The contribution in � accounts for the variation of the
salinity n0 along the thermal gradient. The term propor-
tional to �� describes the effect of the electric field E1; it
depends on the sign of the screening cloud and thus of the
particle’s charge �. Since all contributions in (9) are of
similar magnitude, the force fx and thus the transport
coefficient DT may take both signs, depending on the
particle valency and the electrolyte properties. With the
heat of transport Q� measured for ions in electrolyte solu-
tions, both� and �� take values of the order unity that may
be positive or negative. For the case � ¼ 0 ¼ ��, as
assumed implicitly in [16–20], fx is strictly positive and
leads to thermophoretic motion opposite to the thermal
gradient, DT > 0.
Thermally driven transport.—We have not yet specified

the electric potential. Gouy-Chapman theory for (almost)

flat surfaces gives  ̂ ¼ 4 artanhð	e�z=�Þ [29], where the
properties of the charged particle-fluid interface are con-

densed in the number 	 ¼ ð1þ 1=�̂2Þ1=2 � 1=�̂; the di-
mensionless coupling parameter

�̂ ¼ 2
��‘B (10)

depends on the charge density �, the Debye length � ¼
ð8
n0‘BÞ�ð1=2Þ, and the Bjerrum length ‘B ¼
e2=ð4
"kBTÞ. In the weak-charge limit one readily recov-

ers the potential in Debye-Hückel approximation  ¼
ð��e="Þe�z=�.
With the explicit expressions for the potential  , the

electric field E ¼ �@z , and the charge and ion densities �
and n, the integral in (8) can be performed analytically,

vB ¼ 1

�

kBTx
8
‘B

Ĉ; (11)

where the dimensionless quantity

Ĉ ¼ �̂2 þ 8ð�þ �� 3Þ ln cosh
�̂

4
� 3���̂ (12)
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is given as a function of the reduced surface potential �̂ ¼
 ̂ð0Þ. The relation to the coupling parameter �̂ is estab-
lished by

�̂ ¼ 2 arsinh�̂:

The most relevant experimental control parameters are the
Debye length and the surface charge density.

The transport coefficientDT is obtained by averaging vB
over the orientation of the surface with respect to the
applied thermal gradient, u ¼ �hvBexi [2]. With hTxexi ¼
2
3rT and including the factor � ¼ 3
S=ð2
S þ 
PÞ ac-

counting for the thermal conductivity ratio of solvent and
particle [19], one finds

DT ¼ �
kB

12
�‘B
Ĉ: (13)

Equation (13) constitutes the main result of this Letter and
provides the explicit dependence on the electric properties
of solute and solvent, in terms of the surface charge density
�, the permittivity ", the Debye length �, and the electro-
lyte Soret and Seebeck coefficients � and ��.

In the case of weak coupling, j�̂j � 1, we use �̂ ¼ 2�̂,

expand (12) to quadratic order, Ĉ ¼ �̂2ð1þ �þ �Þ �
6�̂��, and obtain the transport coefficient in Debye-
Hückel approximation,

DT ¼ �e2

12�"T

�
ð1þ �þ �Þ�2�2 � ��

3��


‘B

�
: (14)

The first term proportional to 1þ �þ � agrees with that
obtained previously in [21]. For � ¼ 0 ¼ �� and in the
limit �=a! 0, our Eq. (13) agrees with the result of [19],
and Eq. (14) confirms the law DT / �2 obtained in
Refs. [6,16–18]. A linear variation occurs for small parti-
cles [21,30–32], i.e., in the limit opposite to that treated
here.

Discussion.—The main result of the present work con-
cerns the effect of the thermoelectric field. In the absence
of electrolyte Soret and Seebeck effects (� ¼ 0 ¼ ��), the
coefficient DT is strictly positive, i.e., a temperature gra-
dient drives the suspended particles towards colder regions.
An inverse effect (DT < 0) occurs for a sufficiently nega-

tive Soret coefficient �, or if the product ���̂ takes a
positive value. In physical terms, �< 0 means a higher
salinity in warmer regions of the solution, whereas ��
describes the direction and magnitude of the thermoelec-
tric field with respect to the thermal gradient.

The numbers of Table I and Ref. [24] suggest that
protons are the main source of the thermoelectric effect.
The crucial role of the electrolyte composition is confirmed
by the experimental observation that pH and the presence
of protonated buffers significantly influence thermophore-
sis [8–14]. This is illustrated in Fig. 1 for NaCl=NaOH
solution with different content of the strong base sodium
hydroxide. Sodium chloride has positive Soret and
Seebeck coefficients, thus a slightly negative DT occurs

for positively charged colloids. The large Soret strength of
OH� results in ��< 0; then the thermoelectric field E1 is
opposite to the thermal gradient and drives a negatively
charged colloidal particle to higher T (DT < 0).
For NaCl solution we compare the Gouy-Chapman or

strong-coupling expression (13) and the Debye-Hückel
approximation (14); according to the curves in Fig. 1, the
latter works well for j�̂j< 1

2 , but ceases to be valid at

j�̂j � 1. Most experimental systems carry rather high

charge and surface potential � ¼ �̂kBT=e, thus requiring
a strong-coupling description; the numbers for �̂ in
Table II imply that Debye-Hückel approximation fails for
these systems.
Figure 2 illustrates the effect of the electrolyte compo-

sition at low acidity as a function of the added amount of
NaCl or LiCl. The points present experimental data from
Ref. [10] for 26-nm polystyrene beads in a cyclohexyl-3-
aminopropanesulfonic acid (CAPS) buffered electrolyte
solution. Since the Soret parameters for the buffer mole-
cules are not known, only Na, Li, Cl, OH are taken into
account, with the values of Table I. At low salinity the
thermophoretic mobility is to a large extent determined by
the thermoelectric field of hydroxide ions and takes a large

TABLE I. Heat of transport Q�
i and reduced Soret coefficient

�i at room temperature for dilute systems. The values Q�
i are

taken from Ref. [24]. The parameters �i follow from Eq. (4).

Ion Hþ Liþ Kþ Naþ OH� Cl�

Q�
i (kJ=M) 13.3 0.53 2.59 3.46 17.2 0.53

�i 2.7 0.1 0.5 0.7 3.4 0.1
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FIG. 1 (color online). Transport coefficient DT for different
electrolytes as a function of the reduced coupling parameter �̂ ¼
2
��‘B. The full lines and the dashed lines give Eqs. (13) and
(14), respectively. With the numbers of Ref. [24] and Eqs. (4)
and (6) one has � ¼ 0:8, �� ¼ 0:6 for NaCl, � ¼ 2:45, �� ¼
�1:05 for equimolar NaCl=NaOH solution, and � ¼ 4:1, �� ¼
�2:7 for NaOH.
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negative value. Adding salt weakens this effect through the
decreasing relative weight of �OH in the coefficients � and
��. For nS � nOH, the pH value becomes irrelevant for
the thermophoretic mobility.

We conclude with a discussion of the temperature de-
pendence of DT . The Soret coefficients of the alkali chlor-
ide series show a slope d�=dT ¼ 0:03 K�1 [25–27].
Assuming the same law to hold for ��ðTÞ and using the
values of Table I at 25 �C, we obtain a good fit for the data
of [11] on polystyrene beads in a 4 mM=l NaCl solution in
the range from 0 �C to 40 �C, and, in particular, the change
of sign of DT at T ¼ 5 �C. For comparison, the Debye

length �� ffiffiffiffiffiffi
T"

p
and the permittivity d�=dT < 0:01 K�1

depend weakly on T; the viscosity d ln�=dT ��0:02 K�1

[33] provides an overall factor to DT but does not affect its
sign. The temperature variation of the ionic Soret coeffi-
cients is strongly correlated with the thermal expansivity �
of the solvent [25]. In addition to the electrostatic term, the
van der Waals interaction could contribute to DT a term
proportional to � [11,34], with a temperature dependence
similar to that of �.
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FIG. 2 (color online). Thermophoretic mobility at large pH as
a function of added salt concentration (NaCl or LiCl). The data
points are taken from Figs. 5a and 5b of Ref. [10]; they are
obtained for polystyrene beads of radius a ¼ 13 nm in a CAPS
buffered electrolyte solution at fixed pH. The curves are calcu-
lated from Eq. (13) with the ionic Soret coefficients of Table I for
Na or Li, Cl, and OH, assuming a constant charge density � ¼
�0:12 nm�2. The hydroxide concentration nOH ¼ 12 mM=l
corresponds to pH ¼ 10:3.

TABLE II. Coupling parameter �̂ ¼ 2
��‘B calculated from
the experimental parameters for protein, polystyrene (PS) beads,
sodium dodecyl sulfate (SDS) micelles, and Ludox particles.

� (nm) � (nm�2) � (mV) �̂

Protein T4L [9] 26–67 0.5–1.8

PS beads [9] �85–96 �3
SDS micelles [6] 0.5–2.5 �� 0:2 �0:6–3:1
Ludox particles [14] 0.5–8 �0:04 �0:1–1:4
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