
Soret Motion of a Charged Spherical Colloid

Seyyed Nader Rasuli1,2,* and Ramin Golestanian3,+

1School of the Physics, Institute for Theoretical Physics and Mathematics (IPM), P.O. Box 19395-5531, Tehran, Iran
2Institute for Advanced Studies in Basic Sciences, Zanjan 45195-1159, Iran

3Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom
(Received 31 July 2007; revised manuscript received 2 June 2008; published 5 September 2008)

The thermophoretic motion of a charged spherical colloidal particle and its accompanying cloud of

counterions and coions in a temperature gradient is studied theoretically. Using the Debye-Hückel

approximation, the Soret drift velocity of a weakly charged colloid is calculated analytically. For highly

charged colloids, the nonlinear system of electrokinetic equations is solved numerically, and the effects of

high surface potential, dielectrophoresis, and convection are examined. Our results are in good agreement

with some of the recent experiments on highly charged colloids without using adjustable parameters.
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Introduction.—A temperature gradient applied to a fluid
mixture causes relative transformation of its components:
some condensing in the hotter and some in the colder side.
This phenomenon, known as the Soret effect or thermo-
phoresis, has been studied for nearly 150 years [1] and has
been observed in a variety of systems [2–7]. While the
existence of such a response can be well formulated in the
framework of nonequilibrium thermodynamics [8], in
many cases its microscopic nature remains poorly under-
stood [9–14]. The manifestation of this effect in charged
colloidal solutions is particularly puzzling: while it is
usually observed that colloids condense in the colder
side, experiments with opposite results also exist [2] and
it appears that the tendency could change with the variation
of salt concentration and temperature [3,4].

In a pioneering work in 1981, Ruckenstein suggested a
model for Soret motion of a single charged colloidal par-
ticle [9]. Using Boltzmann distribution for ion densities
and the Debye-Hückel approximation for the electrostatic
potential, he was able to solve the hydrodynamics equa-
tions and find the drift velocity of a colloid in a temperature
gradient. The 2002 experiment by Piazza and Guarino on
sodium dodecyl sulfate (SDS) micelles solutions provided
an opportunity for verification of this model [3]. The SDS
micelles in the experiment were highly charged, as they
had an estimated saturated structural charge of Z ’ 75 (in
electronic unit) [15] and a radius of a ¼ 2:5 nm, and the
thickness of their double layer—as set by the Debye
length—varied between 0.4–2.5 nm [3]. The experiment
was therefore outside the region of validity of
Ruckenstein’s theory, which was restricted to weakly
charged colloids with thin double layers. Piazza and
Guarino showed that it was possible to get a reasonable
fit to the experimental data for the dependence of the Soret
coefficient on the salt concentration using Ruckenstein’s
formula, provided they assumed an increased radius of a ¼
3:5 nm and a reduced charge of Z ¼ 17 [3]. The apparent
smaller charge of the colloid could be interpreted as the
renormalized charge as described by Alexander et al. [16].

However, this attribution is not entirely justified as the
concept of effective charge is defined through the asymp-
totic form of the electrostatic potential of the colloid far
away from its surface [16], while Ruckenstein’s model
deals with the electric field inside the thin double layer.
In fact, the value of the effective charge Z ¼ 17 used by
Piazza and Guarino is obtained from measurements on
intercolloidal interactions [15], and electrophoretic obser-
vation on SDS micelles does not seem to confirm this value
[17]. More recently, Putnam et al. performed experiments
on highly charged T4 lysozymes and found results that do
not seem to be explained satisfactorily by any of the
existing theories on single-colloid thermophoresis [7].
Another recent experiment by Duhr and Braun [5] probed
charged particles with low surface potentials and found a
new scaling relation for Soret motion of charged colloid
which does not agree with Ruckenstein’s prediction. They
showed that it is possible to explain their observations,
using the Gibbs enthalpy of the charged colloid [5] (or the
irreversible work needed to construct it [12]). The contro-
versy was later clarified to some extent but the work of
Astumian [13], who suggested that while Ruckenstein’s
model deals with the deterministic steady motion of a
charged colloid, the theory by Duhr and Braun addresses
its fluctuation-induced stochastic motion, which is a sepa-
rate contribution, and a complete picture should involve
both of these aspects simultaneously.
Here, we focus on the deterministic motion of a charged

spherical particle in a temperature gradient, and consider
both weakly charged and highly charged cases taking into
account effects such as the temperature dependence of
solvent electric permittivity, convection, and nonequilib-
rium coion or counterion redistribution. We examine the
behavior of the system using Debye-Hückel approximation
for weakly charged colloids, and provide an analytical
result for colloid drift velocity with arbitrary double-layer
thicknesses. For highly charged colloids, we solve the
nonlinear set of coupled equations numerically, and find
that the Soret coefficient has a nonmonotonic dependence
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on the surface (zeta) potential of the colloids, an effect that
has been indeed observed by Putnam et al. [7]. We also
examine the relative importance of various contributions in
the different regimes. For the experiment with SDS mi-
celles [3], we show that our systematic approach can yield
results in reasonable agreement with the experimental data,
using a realistic bare value for the micellar charge.

Model.—We consider an ionic solution of different spe-
cies with concentration Ci and valence qi, which create an

electrostatic potential � through Poisson’s equation � ~r �
" ~r� ¼ 4�

P
iqiCi. This solution is subject to a gradient in

temperature which causes " to change in space. We con-
sider weakly varying temperature fields, so we use linear
response theory to study the deformation of the double
layer and solvent flow. The Soret motion of a charged
colloid is a steady motion which means that in the colloid
framework we should look for a stationary solution for the

fluid velocity field ~V. This fluid velocity is governed by the
Navier-Stokes equation and the incompressibility con-

straint ~r � ~V ¼ 0. In the limit of low Reynolds number,

this yields the stationary Stokes equation ��r2 ~V ¼
� ~rP� ~r�P

iqiCi þ ~f. Here � is the viscosity of the

solvent and P is its pressure. The body force ~f is the
dielectrophoretic force, which comes from the net force
experienced by electric dipoles of water molecules because
of spatial variation in the electric field [18]. It reads [19]:
~f ¼ ~rð"�1

8� j ~Ej2Þ � 1
8� j ~Ej2 ~r", where ~E ¼ � ~r�. The first

term in this expression is a complete derivative and can be

absorbed in the fluid pressure (i.e., P ! P� "�1
8� j ~Ej2).

Assuming that the solvent is incompressible (i.e., � ¼
�0), changes in its permittivity "ð�0; TÞ are due to the

temperature gradient only: � 1
8� j ~Ej2 ~r" ¼ � "

8� j ~Ej2
~rT
T ,

where � ¼ �@ ln"=@ lnT is about 1.35 for water at room
temperature [20]. Finally, each ion species is subject to a

conservation law ~r � ~Ji ¼ 0, with ionic current density:

~J i ¼ �Di
~rCi ��iCiqi

~r�þ ~VCi �DiCiS
ion
T

~rT; (1)

where�i is the ith type of ion mobility andDi ¼ �ikBT is
its diffusivity. SionT is the coion or counterion Soret coeffi-
cient. Here we only focus on 1:1 electrolytes, so we assume
that coions and counterions have equal Soret coefficients
[21].

In the absence of any temperature gradient and fluid
motion, Eq. (1) is simplified to its first two terms. Then,

Ci ¼ C0 exp½�qi�=kBT� yields ~Ji ¼ 0, and satisfies ~r �
~Ji ¼ 0. In the presence of a temperature gradient, however,
not only do we have to consider all of Eq. (1) terms, but we
also note that a Boltzmann weight form for Ci no longer

makes �Di
~rCi ��iCiqi

~r� vanish; instead, it yields

�DiCiðqi�=kBT
2Þ ~rT. We suggest to use the following

form: Ci ¼ C0 exp½� qi�
kBT

� ðT � T0ÞSionT þ ðT�T0

T0
Þ�i�,

where �i measures the deviation of the concentration
from a Boltzmann weight form, and it contains contribu-

tions from the convective term in Eq. (1) as well as the

aforementioned term of �DiCiðqi�=kBT
2Þ ~rT.

Our aim is to find the colloid drift velocity, so we focus
on the Stokes equation that governs fluid velocity. The
electric and dielectrophoretic forces on the right-hand
side are acting as source terms that induce fluid motion.
To first order in temperature changes, the source terms
simplify to

� ~r�0

X

i

qiC
0
i

�
qi�0

kBT0

�T0S
ion
T þ�i

�
�T

T0

þ�
"j ~E0j2
8�

~rT
T0

;

(2)

where C0
i ¼ C0 exp½�qi�0=kBT0� and ~E0 are the unper-

turbed values of ion density and electric field. Here, we
have also extracted another complete derivative (i.e.,

� ~rP
i qiC

0
i ��), which can be absorbed in the fluid pres-

sure term [18].
Weakly charged colloids.—For q�=kBT � 1, we can

use the Debye-Hückel approximation and solve this system
of equations analytically [18]. The drift velocity of a
colloid with radius a is found as

~Vdrift ¼ �"�2
S

48�

~rT

�T0

fð1þ T0S
ion
T ÞFð�aÞ �Gð�aÞ

þ �½2� Fð�aÞ�g; (3)

where �S ¼ Zq="að1þ �aÞ is the zeta potential of the

surface of the colloid and � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�q2C0="kBT0

p
is the

inverse Debye length [22]. In this equation, FðxÞ ¼ 2x�
4x2e2xE1ð2xÞ and GðxÞ ¼ x

6 ½xð1þ xÞð12� x2ÞexE1ðxÞ þ
8� 11xþ x3 � 24xe2xE1ð2xÞ�, with E1ðxÞ¼

R1
x e�sds=s.

Equation (3) is arranged in the form of Ruckenstein’s result
for colloid drift velocity [9] multiplied by a correcting
factor. Each term in this correcting factor corresponds to
one of the source terms in Eq. (2) [i.e., �½2� Fð�aÞ� cor-
responds to the dielectrophoretic term, �Gð�aÞ to �i�T=
T0 term, and T0S

ion
T Fð�aÞ to ion Soret term]. The remain-

ing Fð�aÞ corresponds to the � ~r�0

P
iqiC

0
i ½qi�0

kBT0
��T=T0

term, which corrects Ruckenstein’s result [9] for arbitrary
double-layer thicknesses.
The limit of a thick double layer (i.e., �a � 1) or low

ionic strength is particularly interesting, as for �a ¼ 0 we
have Fð�aÞ ¼ Gð�aÞ ¼ 0 [18], and the only contribution
in the correcting factor of Eq. (3) will be 2�. It means that
with low ionic density, the dielectrophoretic force that is
the force on water molecules [18] plays the dominant role
in the phenomenon. In addition, Ruckenstein’s formula
will still be applicable, if we multiply it with a constant
2�, which can be presented in terms of a renormalized

surface potential �0
S¼

ffiffiffiffiffiffi
2�

p
�S or charge Z

0 ¼ ffiffiffiffiffiffi
2�

p
Z [23].

Highly charged colloids.—The Debye-Hückel approxi-
mation is not valid for highly charged colloids and one
needs to fully take account of the nonlinearity of the
electrostatics. To this end, we have solved the above gov-
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erning equations numerically. Figure 1(a) shows the Soret
coefficient TST � Vdrift as a function of �a for various
values of structural charge, corresponding to the SDS mi-
celles used in the experiment of Ref. [3]. We find that while
the Soret coefficient initially increases with the struc-
tural charge—in agreement with the Debye-Hückel limit
behavior where it is proportional to �2

S � Z2=ð1þ �aÞ2—
this trend is reversed at sufficiently high values of the
charge and the Soret coefficient starts to decrease until it
changes sign and becomes negative. We can understand
this behavior better if we track the contributions of the
different source terms in Eq. (2) to the Soret coefficient.
Following our analytical approach [that led to Eq. (3)], we

name the contribution of � ~r�0

P
iqiC

0
i ðqi�0=kBT0Þ�

ð�T=T0Þ term in Eq. (2) as the F term, that of the dielec-
trophoretic term as the � term, and finally that of �i’s as
the �G term [note the minus sign of Gð�aÞ in Eq. (3)].
Figure 1(b) shows the relative importance of these contri-
butions as a function of the surface potential. While for
weakly charged colloids (i.e., jq�S=kBTj � 1), the � term
is the dominant contribution, for jq�S=kBTj � 1, the situ-
ation changes in favor of the G term, which eventually
leads to negative Soret coefficient at high surface poten-
tials. Interestingly, for the surface potentials attributed to

the SDS micelles of Ref. [3], the two terms balance each
other.
A similar nonmonotonic behavior has recently been

observed by Putnam et al. for lysozyme proteins with
various surface charges or potentials [7]. Figure 2(a) shows
a comparison between their observed TST versus lysozyme
surface potential, and the prediction of our theory without
any adjustable parameters. In this calculation, we have
ignored the contribution of the Soret coefficient of the
ions, as we were not able to obtain relevant experimental
values for these quantities. The encouraging agreement
suggests that for highly charged colloids it will not be
sufficient to treat the double layer close to the surface
within the equilibrium Poisson-Boltzmann formulation,
and it is necessary to fully take account of the nonlinear
nonequilibrium effects in the profile of the ion cloud
around the colloid.
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FIG. 1 (color online). (a) TST vs �a for a colloid with radius
a ¼ 2:5 nm, but different charges. Mean temperature is T ¼
25 �C, and we extrapolated existing data [21] to obtain (Naþ and
CL�) ion Soret coefficient: SionT ¼ 0:99–2� 10�3 K�1 (depend-
ing on salt density). (b) Ratios of the dielectrophoretic term (�
term) to the F term (dashed blue line) and G term/F term (solid
red line), versus jq�S=kBTj, for �a ¼ 2. jq�S=kBTj ¼ 3:74
corresponds to Z ¼ 50–60, our suggested charge for a micelle
in the experiment of Ref. [3]. The dash-dotted (orange) curve
corresponds to when the convection term is artificially switched
off.
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FIG. 2 (color online). (a) Comparison of Putnam et al. [7] data
(red solid line) for mutant T4L lysozymes with Z ¼
þ3;þ5;þ7;þ9, and Rh ’ 1:8 nm, with our numerical predic-
tion (dash-dotted green curve). (b) Comparison of the experi-
mental data of Piazza and Guarino [3] with our theoretical
prediction. Depending on salt concentration, we assume a vary-
ing micelle charge of Z ¼ 50–60 [18], a varying ion Soret
coefficient SionT ¼ 0:99–2� 10�3 K�1, and a fixed ionic diffu-
sion coefficient D ¼ 1:33� 109 nm2=s [24]. Our data is lifted
by þ6:547, to obtain the best fit with four last points.
(c) Comparison of our analytic theory with Duhr and Braun
data [5] for polystyrene spheres with different radii.
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It is also interesting to probe the role of convection in our
results. The convection term in Eq. (1) affects �i’s and
consequently the G term. The dash-dotted (orange) curve
in Fig. 1(b) shows the ratioG term/F term, with convection
artificially turned off. We observe that while for
jq�S=kBTj � 1 the convective term has a small effect
(proportional to jq�S=kBTj2 [18]), for higher surface po-
tentials the convective motion will be non-negligible, but
always finite.

We also do numerical calculation for the experiment
of Piazza and Guarino, and use electrophoresis data [17]
to find micelles charge [18]. The result is presented in
Fig. 2(b), which only shows an agreement with the experi-
ment for �a > 3. Since we have established (see Fig. 1)
that changing the structural charge does not lead to a better
harmony, we can conclude that effects other than the ones
considered here systematically should control the behavior
of the system for �a < 3.

Discussion.—The experiment performed by Duhr and
Braun [5], unlike most other experiments, has been done
for colloids within Debye-Hückel regime. Therefore, it is
natural to expect that our analytical results should agree
with its findings. Figure 2(c) compares our result [based on
Eq. (3)] with its data, and does not show a satisfactory
agreement. We have examined possible corrections com-
ing from fluid slip velocity on the colloid surface and
mismatch in the thermal conductivities of the colloid and
the fluid, and found that they cannot improve the situation
[24]. To resolve this discrepancy it has been suggested [13]
that one should differentiate between the regime where
hydrodynamic or deterministic components of the motion
are dominant and the regime in which the system feels a
local thermal equilibrium, and it is the stochastic motion
which is the dominant player. It is expected that the be-
havior of the Soret coefficient as a function of various
parameters such as the radius, temperature, etc. will be
significantly different in these two regimes. This means
that a theoretical formulation that can account for experi-
ments corresponding to the hydrodynamic or deterministic
regime is almost bound to fail to account for experiments
in the stochastic regime as they would be mutually exclu-
sive, a view which is also supported by recent experimental
evidence [25]. Further work is needed to fully clarify this
picture, ideally in the form of a theoretical formulation that
includes both effects and can show the crossover from one
behavior to the other in a systematic way.

In conclusion, we have presented a systematic theoreti-
cal analysis of the Soret motion of charged colloids both in
the weakly and strongly charged regimes. Using contribu-
tions from different physical sources, we have found com-
peting tendencies that are entirely due to the nonlinearity
of electrostatics and the nonequilibrium redistribution of
the ion clouds around the colloid.
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