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Direct Coupling Between Magnetism and Superconducting Current in the Josephson ¢, Junction
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We study the proximity effect between conventional superconductor and magnetic normal metal with a
spin-orbit interaction of the Rashba type. Using the phenomenological Ginzburg-Landau theory and the
quasiclassical Eilenberger approach it is demonstrated that the Josephson junction with such a metal as a
weak link has a special nonsinusoidal current-phase relation. The ground state of this junction is
characterized by the finite phase difference ¢,, which is proportional to the strength of the spin-orbit
interaction and the exchange field in the normal metal. The proposed mechanism of the ¢, junction
formation gives a direct coupling between the superconducting current and the magnetic moment in the
weak link. Therefore the ¢, junctions open interesting perspectives for the superconducting spintronics.
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Usually the current-phase relations in Josephson junc-
tions near the critical temperature are sinusoidal j(¢) =
Jesin(g), but with lowering temperature the contribution
of the higher harmonic terms ~ j,, sin(n¢) can be observed.
However, if the time reversal symmetry is preserved the
current-phase relation is always antisymmetric j(—¢) =
—j(¢e) [1]. Without this restriction a more general j(¢) =
Josin(e + ¢() dependence is also possible, and the generic
expression for the current in the pioneering work of
Josephson [2] incorporates this possibility. In fact, such
current-phase relations have been predicted for Josephson
coupling involving the unconventional superconductors
[3-6]. The experimental verification of these predictions
is still lacking.

In the present work we demonstrate that the Josephson
superconductor/normal metal/superconductor junctions
(S/N/S) provide the realization of such unusual current-
phase relations j(¢) = j, sin(¢ + ¢,) for the case of con-
ventional superconductors when the normal layer is a non-
centrosymmetric, i.e., with broken inversion symmetry
(BIS) magnetic metal. Further on we will call this junction
the ““¢q junction.” The phase shift ¢ is proportional to the
magnetic moment, and therefore these ¢, junctions serve
as examples of systems with direct coupling between
magnetic moment (internal exchange field) and supercon-
ducting current. This opens an interesting field of applica-
tion of ¢, junctions in superconducting spintronics.
Varying the N layer thickness we may easily control the
phase shift ¢,. Note that the considered situation is differ-
ent from the case of the Josephson junction with dominat-
ing second sinusoidal harmonic; see [6,7] and references
cited therein. In such a case at the ground state an arbitrary
phase drop across the junction may exist if the sign of the
second harmonic is negative. However, in these systems it
is impossible to have the direct coupling between magnetic
exchange field and superconducting phase, and the prop-
erties of these junction are very different from that of the
¢ junctions considered here.
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Before addressing the problem of the proximity effect
between conventional superconductor and BIS magnetic
metal, it is useful to recall that recently BIS superconduc-
tors attracted a lot of attention. Namely, the heavy fermion
superconductor CePt;Si provides a famous example of the
superconductivity and antiferromagnetism coexistence in
the noncentrosymmetric compound [8]. Now the number
of superconductors without inversion symmetry ap-
proaches 12, and during the past years their properties
were under intense studies from both theoretical and ex-
perimental points of view; see [9-14] and references cited
therein. In the presence of the magnetic field the lack of
inversion symmetry leads to the spatially modulated heli-
cal superconducting phase [10,13,15,16].

The Josephson junctions between conventional super-
conductor and BIS superconductors should reveal some
special features [13,17]. We stress that the aim of this
work is to study the very different situation: the
Josephson junction between conventional superconductors
with a weak link formed by a BIS magnet. As an example
of the suitable candidates for such interlayer, we may cite
MnSi and FeGe. The anomalous properties of studied
junctions are related to the particularities of the super-
conducting proximity effect in the BIS metal.

On the microscopical level the special character of the
electron spectrum in BIS metal may be described by the
Rashba-type spin-orbit coupling [18]: a(d X p) - #i, where
71 is the unit vector along the asymmetric potential gradient
and parameter « describes its strength. To illustrate the
unusual properties of the BIS Josephson junction we start
with a simple Ginzburg-Landau (GL) approach.
Describing the weak link by the GL theory we assume
the temperature is above the critical temperature of the
material of the weak link and the superconducting order
parameter is induced only by the superconducting banks.
As it has been noted in [10,13], the Rashba-type interaction

in the presence of the field h acting on the electron spin
leads to the following GL free energy density:
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F = alyl + yIDyP + Iy

— eii - {h X [p(Dy)* + ¢* (DY)}, (1)

where i is the superconducting order parameter, D; =
—id; — 2eA;, and the coefficient a becomes zero at some
temperature T,y: a ~ (T — T,o). The special character of
the BIS superconductivity is described by the last term in
(1) with the coefficient € ~ «. In principle the field h may
be created by the applying external field, but we suppose

that BIS metal is a ferromagnet and i is an internal
exchange field (which is assumed to be small to avoid
the necessity of adding higher order derivative terms in
(1) [19]). Note that the origin of the spin-orbit contribution
in (1) may be intrinsic resulting from the crystal symmetry
or extrinsic. The latter case corresponds, for example, to
the ferromagnetic layer with the in-plane magnetization
and a varying thickness. To be more specific, below we
consider the intrinsic BIS metal. Schematically the
Josephson junction is presented in Fig. 1. Further on, to
concentrate on the special properties of this junction we
neglect the orbital effect. In Fig. 1 the magnetization is
along the z axis and the demagnetization factor N = 1
and then the internal magnetic field in the junction H ;=
—47M. Therefore the magnetic  induction B=

H i+ 47M =0 and then for this geometry the orbital
effect is vanishing. Alternatively we may assume the mag-
netization lying in the x-y plane (in such a case the 7 vector
must be along the z axis).

In the considered case of the weak link of the length 2L,
see Fig. 1, the order parameter depends only on the coor-
dinate x and the corresponding GL equation is

02 0
a¢—y—‘f+2ish—¢=o, 2)
ax 0x

where we have neglected the nonlinear term assuming the
superconducting banks being at a temperature slightly
below their critical one. The solution of (2) is straightfor-

A

—L -

FIG. 1. Geometry of Josephson junction with BIS metal as a
weak link. The exchange field is directed along the z axis and the
n vector is along the y axis. The total length of the weak link is
2L.

ward:
i = Aexp(q;x) + Bexp(gx), 3)

with g, = i * J% — &2, where & = % and the condition
% > &2 assures that the weak link is in the normal state (i.e.,

the temperature is above the intrinsic critical temperature
of BIS metal a > a, = y&?). To illustrate the particularity
of the proximity effect in the BIS system, let us consider
the contact of superconductor with a metal occupying the
x > 0 half-space. In such a case the order parameter dis-
tribution is described by the decaying exponent in (3) ¢~

exp(i&x) exp(—x,/~=%). The difference with the usual
Y

proximity effect is that the order parameter decay is ac-
companied by the superconducting phase rotation.
Therefore, in the weak link the phase difference propor-
tional to its length would be accumulated. Because of the
24 periodicity the actual phase difference is limited by the
interval (0, 277).

To calculate the current we need to determine the co-
efficients A and B in (3) from the boundary conditions at
the contact with the superconductors. For illustration we
assume that there is no barrier at the interface and we may
use the rigid boundary conditions [1] (i.e., the normal
conductivity of the BIS metal is much smaller than that
of the superconducting bank). Therefore the coefficients A
and B are obtained from the continuity conditions for ¢ at
x=*L: (L) = |Alexp(+i%), with |A| being the
modulus of the order parameter in the banks and ¢ is the
superconducting phase difference across the junction.
Taking into account the new expression for the supercon-
ducting current coming from (1) (note that there is addi-
tional contribution to the current from the spin-orbit term)
and performing the corresponding calculation, we readily

find in the limit of the long junction L, [% —-&2>1

j=4dey|Al? ’E — &%sin(p + 28L) exp<—2 ,ﬁ — §2L).
Y Y
“)
The current-phase relation
J(@) = j.sin(e + @) Q)
implies that the junction energy
Ej~ —jccos(e + @), (6)

and the minimum energy corresponds to the nonzero phase
difference ¢ = —¢,. Naturally the Josephson junction
energy may be also directly obtained from the functional
(1). Note that (6) describes the transition from 0 to 7
junction when ¢ vary from 0 to —7r. However, in contrast
to the O-7 transition in superconductor/ferromagnet/super-
conductor (S/F/S) junctions [19], the critical current does
not vanish at the transition but remains constant. The
presence of the ground state phase difference ¢, is a
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consequence of BIS and the 4 = h, component of the spin
field in the weak link: ¢y = % Note that we assumed

the continuity of the order parameter at the bank. In
general, the interface barrier provokes a jump of the order
parameter and in our case it produces some additional
phase rotation which may even exceed ¢, for the large
values of the interface barrier.

The approach on the basis of the GL functional though
very insightful cannot adequately describe the systems
with strong internal exchange field & > T, which is usu-
ally the case in the magnetic metals. Therefore we also
present the theory of the ¢ junction on the basis of the
quasiclassical Eilenberger equations [20].

Provided the spin-orbit interaction is smaller than the
characteristic electron energy scale Er we may consider
the Rashba term as an external potential in the standard
scheme of derivation of the Eilenberger equations (this
implies @ < v, where v is a Fermi velocity). This ap-
proach has been successfully applied for the description of
the superconducting state in CePt;Si [21]. In principle, to
have a complete description of the BIS junction we need to
solve the Eilenberger equations also in the superconduct-
ing banks and take into account the suppression of the
superconducting order parameter near the interfaces. The
full treatment of this problem requires the extended nu-
merical calculations [1]. Below we would like to concen-
trate on the peculiar properties of the BIS junctions. That is
why we provide the results for some cases which can be
treated analytically. The resulting coupled equations for
anomalous Green function f;; (v, r) (matrix in spin space)
are rather cumbersome for the 3D case but strongly sim-
plified in the 2D or 1D case—they are decoupled. Namely,
for the geometry in Fig. 1 and supposing the weak link to
be quasi-2D (in x-y plane), the Eilenberger equations in
clean limit in the region —L < x < L read

v, 0 a d
+ = — +ih+ = — =
(w 3 ax)f12 (lh 3 ax)flz 0,

v, 0 . a 0
<w + 7 a)fél - (l]’l + E a)fz] = (.

For the junction Fig. 1 the superconducting order parame-
ter in the banks may be considered constant as a transverse
dimension of the BIS metal is small. Near 7, the
Eilenberger equation in the bank reads (w + %i L)f1p =
Ag 1, where v* is a Fermi velocity in superconductor and
the equation for f,, is obtained by the substitute A — —A.
From this equation it follows that for @ > 0 and v§ > 0 the
function f, is constant in the left bank £}, = (|A]/w) X
exp(i %), while for v} <0 it is constant in the right bank
f12 = (|Al/w)exp(i®) [22,23].

Using the corresponding continuity conditions at x =
* L for the functions f;; at the boundary with supercon-
ductors we may readily calculate them [22]. Note that the
triplet components of f;; vanish: f;; = f,, = 0. Knowing

)

the Green functions readily permits us to calculate the
supercurrent density flowing trough the junction. At tem-
perature close to the critical temperature T, of the banks at
the lowest |A|? approximation

j=—ieNO) 7T Y (v,[f12(v, ) f (¥, x)
+ fZI(V: x)f;l (V: x):|>’ (8)

where N(0) is the density of state at the Fermi level. In the
limit of the long junction L > v/h, the main contribution
in (8) comes from the directions |v,| < v, and the formula
for the current takes a very simple form:

4ahL) cos(4AL + %). ©

i@ = Jo sin(<o 4 dal v
v 4|h|L

v

Here j, = eN (O)UT—A:(g)S/ 2 and in the absence of the spin-
orbit interaction & = 0 this expression coincides with that
for j(¢) for the 2D S/F/S junction [24]. Comparing (9)
with j(¢) from GL theory (4), we see that the phase shift
@o = ‘“fj# in both cases is proportional to the strength of
the spin-orbit interaction and the product AL. On the other
hand, the critical current in (9) oscillates with L changing
its sign. This is a typical behavior inherent to the S/F/S
junctions with the strong exchange field 2 > T [19]. Such
oscillations are absent in our GL approach (4) as it is
adequate for h < T,, otherwise the gradient term in [1]
changes its sign and it is needed to introduce the higher
derivatives terms. Such a modified GL functional indeed
qualitatively describes the oscillatory behavior of the
superconducting order parameter at §/F proximity effect
[19].

In the 1D model of the weak link (single channel ap-
proximation) the very similar to (9) current-phase depen-
dence is obtained

2
i(0) = en(0) XA sin(go + 4“}2*) cos<4|h|L). (10)
2T. v v

We considered a weak link in the framework of
Eilenberger equations in the clean limit (ballistic regime).
In the diffusive regime the very convenient approach is
provided by the Usadel equations [25] for the Green func-
tions integrated over Fermi surface F;;(r) = (f;;(v,r)).
The calculation of the current on the basis of the Usadel
approach gives us also the expression which may be pre-
sented in the form (5). Therefore the formation of the ¢,
junction by the BIS magnets is a very general phenomenon
which may be observed in both clean or dirty limits.

To summarize, in all approaches we obtain the
Josephson junction with unusual current-phase relations
Jj(@) = j.sin(e + ¢@g), where the phase shift ¢ is deter-
mined by the z component of the internal magnetic field.
Though our model is applied for the weak spin-orbit inter-
action a < v, we may expect that qualitatively the phase-
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shift effect would be the same for the systems with strong
spin-orbit interaction & ~ v. In this case the characteristic
length of the phase shift is the same as for the 0-7 tran-
sition in §/F/S junctions, i.e., several nanometer.
Therefore we may believe that the formation of the ¢
Josephson junction is inherent to all weak links or barriers
with magnetic BIS metals.

The S/F/S Josephson junction may have zero or 7
phase difference in the ground state depending on the
length of the weak link. In contrast, in the ¢, junction
the ground state is always different from zero and 7 states
(except the occasional events ¢, = 7rn). In the supercon-
ducting ring with the 7 junction the spontaneous current
appears [26] if the parameter k = 23‘3‘}[ <1, here L is the
inductance of the system. For the ¢, junction the system
energy

.C k 2
Elg) = ’—(— cos(¢ + go) + i). (11

2e 2
Therefore the minimum energy is achieved for the phase

difference satisfying the equation
sin(¢ + o) + k¢ =0, (12)

which always has a nonzero solution and then the ¢
junction will always generate the spontaneous current
with the flux ® = —®(($2)(1 — k) in the k < 1 limit.
The SQUID with one normal and another ¢, junction
would reveal the shift of the diffraction pattern by ¢.
Note also that the ¢, Josephson junctions may serve as a
natural phase shifter in the superconducting electronics
circuits.

The very important property of the discussed ¢ junc-
tion is that it provides a direct mechanism of the coupling
between supercurrent and magnetic moment—indeed, the
phase shift ¢ is proportional to the z component of the
spin field. This means that the precessing magnetization
will be directly coupled with the current which opens new
interesting perspectives to study the coupled magnetic and
current dynamics in Josephson junctions. Applying the
voltage to the ¢, junction we obtain the Josephson gen-
eration, and the magnetic moment of the weak link will
experience the effective field varying with Josephson fre-
quency. If this frequency is close to the ferromagnetic
resonance frequency, it may be an efficient way to generate
the spin precessing. Inversely, the spin precessing in the
weak link would generate superconducting current in the
circuit with the ¢, junction.

Finally, we note that even in the centrosymmetric com-
pounds the inversion symmetry is broken near the surface.

This means that locally the Rashba-type interaction will be
present there and then the Josephson junction made by two
superconducting electrodes attached to the surface of fer-
romagnetic metal would be a ¢ junction.
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