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We consider a ballistic Josephson junction with a quantum point contact in a two-dimensional electron

gas with Rashba spin-orbit coupling. The point contact acts as a spin filter when embedded in a circuit

with normal electrodes. We show that with an in-plane external magnetic field an anomalous supercurrent

appears even for zero phase difference between the superconducting electrodes. In addition, the external

field induces large critical current asymmetries between the two flow directions, leading to supercurrent

rectifying effects.
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Josephson junctions (JJ) are the basic building blocks
for superconducting electronics with applications that
range from SQUID magnetometers to possible quantum
computing devices. In superconductor-normal metal-
superconductor (S-N-S) junctions the supercurrent flow is
due to the Andreev states—a coherent superposition of
electron and holes states. These states depend on the
electronic structure of the normal material and on the
properties of the S-N interface [1–4]. Modern technologies
based on two-dimensional electron gases (2DEGs) [5,6] or
nanowires [7] allow for a precise control of such electronic
properties, and thus of the JJ characteristics. Moreover,
spin-orbit (SO) effects offer new alternatives to control the
spin and charge transport [8,9].

Superconducting rectifiers are among the new devices
proposed and studied during the last few years. Most of
these proposals are based on the dynamics of vortices
[10,11]. Here we show that in systems with SO coupling
rectifying properties can be obtained by controlling the
spin of the Andreev states. To this end we consider a
ballistic JJ with a quantum point contact (QPC) in a
2DEG with SO interaction. The QPC can be tuned to
control the number of transmitting channels and thus the
critical current of the junction [3–5,12,13]. On the other
hand, the QPC with SO coupling may act as a spin filter
producing spin-polarized currents when embedded in a
circuit with normal leads [14–16]. The normal current
also generates an in-plane magnetization—perpendicular
to the current—as well as out-of-plane spin-Hall textures
[17]. Both effects are maximized at the core of the QPC
[18]. As the SO-coupling preserves time-reversal symme-
try (TRS), we expect that these peculiarities of the trans-
mitting channels do not harm the Josephson effect when
the leads become superconducting. However, the
Josephson current itself breaks the TRS and, as we show
below, it reveals striking effects of the SO-coupling. For
example, the supercurrent generates spin polarization in
the 2DEG [19] and the QPC in a similar way normal
current does [17,18]. This is due to the distinctive spin

texture of each Andreev state that contributes to the local
magnetization in a supercurrent-carrying state.
More striking effects take place if an external in-plane

magnetic field is applied. Its effect on the supercurrent
characteristics depends on the nature of the junction. In
the absence of SO-coupling, the Zeeman field may gener-
ate �-junctions resembling the case of S-ferromagnet-S
junctions [1,20]. For systems with SO-coupling, the exist-
ing theories include the description of perfectly contacted
2DEG junctions [21], wide junctions [22], 1D-conductors
[23] and junctions with quantum dots [24,25]. In our case,
the QPC, the internal SO field and the external Zeeman
field conspire to reveal novel effects. Remarkably, we find
a critical current Ic that depends on the current flow direc-
tion. With more than one transmitting channel, the QPC
can be tuned to show either a large Ic asymmetry or a
perfect symmetry. In this regime the JJ can act as a super-
current rectifier [10,11]. At the origin of this effect is the
anomalous supercurrent—proportional to the external
field—that appears even for zero phase difference � be-
tween the two superconducting leads [20,23]. Devices
based on InAs-related materials, that present strong gate-
tunable Rashba SO-coupling are good candidates to look
for these effects [5,6]. In what follows we present the main
results of the theory.
The total Hamiltonian of the system reads

H ¼ HQPC þHR þHL þHC; (1)

here HQPC describes the central 2DEG with the QPC [see

Fig. 1(a)]. In the effective mass approximation HQPC¼
ðp2

xþp2
yÞ=2m�þ�=@ðpy�x�px�yÞþVðx;yÞ�g�B ~� �B,

where the first two terms are the kinetic energy and the
Rashba SO-coupling, respectively, and Vðx; yÞ is the con-
finement potential that defines the QPC. We use a potential
that simulates the effect of two electrodes held at a dis-
tance z from the 2DEG [26], with a gate voltage control-
ling the height, Vg, of the potential barrier at the center

of the QPC. The last term in HQPC is the Zeeman energy.

The Hamiltonians HR and HL describe the right and left
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superconducting electrodes with an order parameter

�R=L ¼ �0e
�i�=2. Finally, HC describes the contact be-

tween the superconductors and the 2DEG.
For the numerical calculations we discretize the space,

mapping the Hamiltonian (1) onto a tight-binding-like
model. We use a square lattice with hopping matrix ele-
ments tN and tS for the normal (2DEG) and superconduct-
ing materials, respectively [27]. The microscopic pa-
rameters of the normal region correspond to InAs-like
materials [5]: the effective mass is m� ¼ 0:045me and
the electron density n� 1012 cm�2 (the Fermi energy is
EF � 53 meV). We take the total length of the junction
L ¼ 1:2 �m and analyze two point contacts denoted as
QPC1 and QPC2 corresponding to different values of z. We
use �0 ¼ 1:5 meV and the coherent length �0 ¼
@vsF=�0 ¼ 43 nm corresponding to Nb films, vsF is the
Fermi velocity of the superconductor [5,6].

We calculate the normal and anomalous propagators that
contain the information of all the physical quantities of
interest. For �0 ¼ 0 the normal conductance G ¼P
�;�0G�;�0 is evaluated using the conventional Landauer-

like formulation [26]. Here G�;�0 is the contribution to the

conductance due to incident electrons with spin � that are
transmitted with spin �0. The spin polarization of the
current is defined as P ¼ P

�ðG�;" �G�;#Þ=G. These quan-
tities characterize the QPC in the normal state. For �0 � 0
we calculate the Josephson current flowing through the
right N-S interface, [27]

Ið�Þ ¼ i
e

@

X
i2N;j2S

½ti;jSNh yðxjÞ ðxiÞi � tj;iSNh yðxiÞ ðxjÞi�:

(2)

Here xi and xj are coordinates at the edge of the 2DEG and

the superconducting electrode, respectively, ti;jSN is the hop-

ping matrix element connecting neighboring sites at the

interface and the field operator  yðxÞ ¼ ð y
" ðxÞ;  y

# ðxÞÞ
creates an electron at coordinate x. We choose ti;jSN ¼ ðtN þ
tSÞ=2; decreasing this value increases the normal scattering
at the interface producing narrow resonances within the
central 2DEG region with strong influence on the
Josephson current [13].
The zero-field case.—The normal conductance of the

system presents clear structures on top of the plateaus
[see Figs. 1(b) and 1(c)] due to broad resonances originated
in the scattering at the electrode-2DEG interfaces. As
shown in the same figure these QPCs generate spin-
polarized currents with a polarization P in the range (0–
0.6) depending on the strength of the SO-coupling and the
number of transmitting channels.
For superconducting contacts, the current-phase relation

(CPR) is shown in Fig. 2(a) for different values of the
parameters. We observe two characteristic CPR: resonant-
like and tunnelinglike (sinusoidal) relations. As Vg
changes, the junction alternates between these two behav-
iors. The critical current Ic is defined as the maximum
current in the CPR. The dependence of Ic and the con-
ductance of the normal state G on Vg is shown in Fig. 2(b).

The structure of both curves is similar with the peaks
located at the same position showing that the maximums
of Ic are due to one-electron resonances [4]. The structure
of the Andreev spectrum includes a number of (dispersive)
states with phase-dependent energies and (nondispersive)
states confined at each side of the constriction; details will
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FIG. 2 (color online). (a) Current-phase relation (CPR) for
different gate voltages in QPC1. (b) Critical current and con-
ductance as function of Vg. The points labeled with letters

indicate the parameters of the curves of panel (a). In (c) and
(d) color maps of the y and z magnetization calculated with the
critical current of curve C of panel (a) are shown. The SO
strength is � ¼ 20 meV � nm and the lattice parameter is a0 ¼
3 nm.
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FIG. 1 (color online). (a) Schematic view of the junction.
Panels (b) and (c) correspond to QPC1 and QPC2 simulated
with gates placed at z ¼ 30 and 90 nm on top of the 2DEG,
respectively. The conductance with ideal 2DEG electrodes (dot-
ted line), with the metallic electrodes described in the text (thick
line) and the current polarization P (thin line) are shown. The
Rashba coupling strength is � ¼ 20 meVnm.
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be presented elsewhere [28]. When there is only one trans-
mitting channel, the Josephson current is dominated by a
single (spin) pair of dispersive Andreev states. As Vg
decreases and the QPC opens, the current is the superpo-
sition of contributions due to different pairs of states.

Because of the SO-coupling each Andreev state has a
well-defined spin texture which in the presence of a super-
current contributes to the local magnetization. As an illus-
tration we calculate the magnetization components hSyðxiÞi
and hSzðxiÞi for all the lattice sites within the 2DEG. As
shown in Figs. 2(c) and 2(d), the supercurrent-induced
steady magnetization has an in-plane component perpen-
dicular to the current direction and an out-of-plane com-
ponent with the spin-Hall structure [17,19].

Effect of external in-plane magnetic fields.—The spin
texture of each Andreev state has a component along the y
direction. In general, for spin-polarizing QPCs, a pair of
dispersive Andreev states—indicated by jþi and j�i—
have hþjSyjþi � �h�jSyj�i. Consequently, with an ex-

ternal field B in the y direction the absolute value of their
Zeeman shifts are different. The effect is illustrated in
Figs. 3(a) and 3(b). In QPCs with a single transmitting
channel we follow a resonance as the SO-coupling � is
increased. For small � we observe the characteristic be-
havior of a resonant state in the presence of a field. The
distance between the steplike changes of the current is a
measure of the Zeeman splitting. As � increases the
Zeeman shift of one of the Andreev states decreases and
changes sign (the steplike structure crosses the � ¼ �
point). In the large � limit hþjSyjþi � h�jSyj�i and the

CPR shows a single step. In this limit, the QPC acts as a
very efficient spin filter in the first plateau [14,18]: all
transmitted electrons have essentially the same spin orien-
tation. This results in an anomalous supercurrent for � ¼
0. To estimate it, we may assume a smooth QPC and
evaluate the phase shift #nðEÞ acquired by an electron

traveling from one superconducting electrode to the other
in the WKB approximation. In #nðEÞ the index n ¼ � is
the channel index and E is the energy measured from the
Fermi energy. For small E we have

#nðEÞ � kF�n þ E

@vF
�n; (3)

here kF (vF) is the Fermi wave vector (velocity) in the
2DEG, �n & L and �n * L are related to the effective
length of the junction at the Fermi energy. Assuming that
at resonance the scattering at SN interface plays no im-
portant role we have [23]

Ið�Þ ¼ evF
�

X
n

1

�n
�

�
�þ�n

B

�n

�
; (4)

here�ðxÞ is a periodic function with�ðxÞ ¼ x for jxj<�,
�n ¼ @vF=�n and �nB is the Zeeman shift. Then, in
Figs. 3(a) and 3(b) the steplike structures correspond to
� ¼ ���nB=�n and the anomalous current Ið0Þ ¼
ð2e=hÞPn�nB is given by the total Zeeman energy of the
transmitting channels—note it does not depend on L.
Nonlinear effects with larger anomalous currents occur
for large fields if �nB=�n > � for some of the channels.
We consider only the linear regime in which the current
cancels for a phase ’ ¼ �Ið0Þ�þ��=evFð�þ þ ��Þ. This
’-junction in a ring geometry generates a spontaneous
current with a fraction of a vortex threading the ring. Let
us point out that the Zeeman field couples to the momen-
tum through the SO-coupling, acting as a gauge field that
generates a ’-junction. Yet, this kind of symmetry argu-
ment is not sufficient, and the adiabatic QPC here plays an
essential role in filtering and coherently mixing very few
transverse channels. Indeed, no such effects have been
obtained in wide junctions [21] and quantum dots [24].
An exception is Ref. [23], where a 1D case was considered.
As in the zero-field case, a small change in Vg shifts the

resonance from EF and the current becomes a smooth
function of the phase, characteristic of a nonresonant junc-
tion. Remarkably, with more than one pair of transmitting
channels the CPR presents new effects, displayed for in-
stance in the second conductance plateau; Figs. 3(c) and 3
(d). In Fig. 3(c), we show a value of Vg for which two

resonances—with different values of their parameters �n

and �n-lie at EF. Changing Vg shifts each resonance by a

different amount. The total CPR now results from the
superposition of contributions with different steplike struc-
tures and different ’-shifts. This leads to a critical current
Ic that depends on the current direction. We define the
critical current asymmetry as Iþc =I�c where Iþc and I�c are
the critical currents for each flow direction. Figure 4 shows
that for physical values of the parameters a large asymme-
try can be obtained by tuning the gate voltage. The magni-
tude of the asymmetry depends on the detailed structure of
the dispersive Andreev states, which is determined by the
interplay between the SO coupling, the external field and
the QPC potential [see Figs. 4(c) and 4(d)]. We found that
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FIG. 3 (color online). CPR for QPC1 [panels (a) and (c)] and
QPC2 [panels (b) and (d)] with an external field of g�BB ¼
0:3 meV. In (a) and (b) the QPC height Vg is set to follow a

resonance at the first conductance plateau for different values of
the SO coupling � (in meVnm). In (c) and (d) the Ið�Þ for
different Vg (in meV) at the second and third plateaus are shown.

Note the asymmetry between Ið�Þ> 0 and Ið�Þ< 0.
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the asymmetry Iþc =I�c can be larger than 3. These large
asymmetry values are the main result of our work.

In summary, we have shown that a spin-polarizing QPC
brings new physics to the JJs. While the most relevant
effect is the new mechanism to generate critical current
asymmetries, the device shows other interesting properties
that highlight the effects of the SO-coupling on the
Andreev states: (i) the supercurrent generates a magneti-
zation in the 2DEG, being larger at the core of the QPC;
(ii) an external in-plane magnetic field induces an anoma-
lous current at zero phase difference (a ’-junction) [23]. In
the latter case, we obtain �-junctions for some values of
the gate voltage (as for � ¼ 0), while in general ’<�.
Such junctions, tunable both by an external flux and a
Zeeman field, may have applications in SQUIDs or super-
conducting quantum bits. With more than one transmitting
channel, the external field induces a large critical current
asymmetry if the QPC potential Vg is properly tuned. Even

for moderate values of the SO-coupling, and realistic val-
ues of the external field (B< 1 T), the asymmetry can be
quite large. The QPC is a central ingredient as it allows the
control of the number and properties of the transmitting
channels. These junctions act as supercurrent rectifiers in
the interval minðIþc ; I�c Þ< jIj<maxðIþc ; I�c Þ, which can
be controlled by adjusting the gate voltage. As this effect
relies on the control of the spin polarization of the Andreev
states, it generates a new alternative for supercurrent rec-
tifiers based on pure spintronic effects.
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FIG. 4 (color online). Critical current asymmetry vs Vg for
QPC1 (a) and QPC2 (b) and different values of � (in meVnm)
with the same applied field of Fig. 3. The conductance of the
QPCs is also shown (dotted line). The lower panels are maps of
the supercurrent for QPC1 with � ¼ 20 (c) and QPC2 with � ¼
5 (d) in the [�, Vg] plane. The Vg-scales of these maps are shown

with horizontal bars in panels (a) and (b). The vertical dashed
lines correspond to the curves of Figs. 3(c) and 3(d).
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