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We discuss the sign of the persistent current of N electrons in one dimensional rings. Using a topology

argument, we establish lower bounds for the free energy in the presence of arbitrary electron-electron

interactions and external potentials. Those bounds are the counterparts of upper bounds derived by

Leggett. Rings with odd (even) numbers of polarized electrons are always diamagnetic (paramagnetic).

We show that unpolarized electrons with N being a multiple of four exhibit either paramagnetic behavior

or a superconductorlike current-phase relation.
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A persistent current [1] flows at low temperatures in
small conducting rings when they are threaded by a mag-
netic flux �. This current is a thermodynamic effect which
is deeply connected to the presence of quantum coherence.
Its magnitude can be expressed as I ¼ �@F=@� in terms
of the free energy F. Persistent currents have been the
focus of intensive theoretical activity (see for example
[2–7]). Nevertheless, the understanding of the experimen-
tally measured currents in metallic [8–11] and semicon-
ductor [12,13] rings remains incomplete. In particular, the
large discrepancy between observed currents in diffusive
rings and the theory for noninteracting electrons points to
the importance of interactions.

The persistent current itself generates a magnetic field
which is detected in the experiments. Besides the magni-
tude of the current, the sign of this magnetic response is of
particular interest. In the absence of interactions, meso-
scopic sample-to-sample fluctuations between paramag-
netic (Fð�Þ<Fð0Þ) and diamagnetic (Fð�Þ> Fð0Þ)
behavior are expected. Taking into account repulsive (at-
tractive) interactions leads to the prediction of a paramag-
netic (diamagnetic) average response in ensembles of
diffusive rings. However, only diamagnetic signals have
so far been observed in experiments.

A very general theoretical result in this domain is the
theorem by Leggett [14] which states that the sign of the
zero-temperature persistent current for spinless fermions
(fully polarized electrons) in one-dimensional (1D) rings is
given by the parity of the particle number. This result
appears in the form of upper bounds for the ground-state
energy. Leggett’s theorem holds for arbitrary potential
landscape and electron-electron interactions.

In this Letter, we establish general lower bounds of the
free energy that can be seen as the counterparts of
Leggett’s upper bounds. Our result is valid at any tempera-
ture and also for unpolarized electrons. Scenarios allowed

by those bounds are studied using the density matrix
renormalization group (DMRG) method [15].
We start with the Hamiltonian

H ¼ XN

i¼1

1

2m
½pi � eAðriÞ�2 þ VðriÞ þ

X

i<j

Uðri � rjÞ

describing N spinless electrons in a 1D ring of size L,
where pi is the momentum of electron i, AðrÞ the vector
potential corresponding to a magnetic flux �, VðrÞ an
external potential, and UðrÞ the electron-electron interac-
tion. A gauge transformation allows for the replacement of
the vector potential by flux-dependent boundary conditions

�ðL; r2; . . . ; rNÞ ¼ ei��ð0; r2; . . . ; rNÞ
with�¼2��e=h for the antisymmetric wave function�.
Leggett’s argument [14] is based on the ansatz

�vðr1; . . . ; rNÞ ¼ ei�ðr1;...;rNÞ�0

for the variational ground state�v at� � 0 in terms of the
exact ground-state wave function�0 at� ¼ 0. The energy
corresponding to this ansatz is

Ev ¼ Eð� ¼ 0Þ þ N@
2

2m

Z
dNrj@r1�j2j�0j2;

where Eð�Þ is the exact ground-state energy. The phase �
is a symmetric function of its arguments and should go
from 0 to � as r1 goes around the ring from 0 to L. In this
loop, r1 crosses the coordinates of the other N � 1 parti-
cles. At each crossing the sign of �0 changes. Since �0

must be back to its initial value at the end of the loop, for
even N there must be at least one more sign change. The
function � can be chosen such that its gradient is concen-
trated around this additional point where �0 vanishes,
yielding Ev ¼ Eð0Þ. This variational energy provides an
upper bound Eð�Þ � Eð0Þ for the ground-state energy and
the system is paramagnetic. A similar argument leads to
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Eð�Þ � Eð�Þ for odd N. In the sequel, we show that these
upper bounds can be complemented by corresponding
lower bounds.

We consider the partition function Z ¼ TrAe
��H where

TrA is the trace over antisymmetrized many-body states.
One can divide the inverse temperature � in K increments
�� ¼ �=K and insert 1 ¼ R

dRjRihRj at each step, where

jRi ¼ jr1; r2; . . . ; rNi denotes the list of positions of all
particles. The result reads

Z ¼ X

P

X

R1;...;RK

jPj½e���H�R1R2

�½e���H�R2R3
. . . ½e���H�RK�1RK

½e���H�RKPðR1Þ;

where P is a permutation of the N particles and jPj ¼ �1
its signature. This path integral formula can be formally
rewritten in continuous form as

Z ¼ X

P

jPj
Z

DRð�Þe�S½Rð�Þ�; (1)

where S½Rð�Þ� is the action of the path Rð�Þ which satisfies
Rð�Þ ¼ P½Rð0Þ�. Examples for such paths are shown in
Fig. 1. The effect of a magnetic flux on the path integral is a
phase �� each time a particle crosses the boundary,
yielding

Zð�Þ ¼ X

P

jPj
Z

DRð�Þei�m½Rð�Þ�e�S½Rð�Þ�; (2)

where the winding number m½Rð�Þ� counts the total num-
ber of boundary crossings contained in Rð�Þ (þ1 from left
to right and �1 in the opposite direction). With F ¼

� logZ=�, Eq. (2) leads to @2F=@�2j�¼0 ¼ hm2½R�i=�
which is widely used to determine the superfluid fraction in
bosonic systems, in particular, in the context of quantum
Monte Carlo simulations [16]. Anyway, Eq. (2) can be
expressed as

Zð�Þ ¼ Xþ1

m¼�1
Zme

i�m

with the partial partition functions Zm for a given m.
In 1D rings, most of the permutations P do not contrib-

ute to the path integral since they would correspond to
paths where two particles cross at some point. Those paths
[see Fig. 1(b)] have zero contribution due to antisymmetry.
As a result, only paths with cyclic permutations contribute
to the path integral. There is only one single cyclic permu-
tation Pm per winding number m (see Fig. 1), whose
signature determines the sign of the corresponding Zm.
Since the signature of a cyclic permutation of N particles

with winding number m is given by jPmj ¼ ð�1ÞmðN�mÞ,
we have

Zm ¼ ð�1ÞmðN�mÞjZmj:
IfN is odd, thenmðN �mÞ is even and Zm is positive for

all m. Since Zm ¼ Z�m, we have

Zð�Þ¼Z0þ2
X1

m¼1

Zmcosðm�Þ�Z0þ2
X1

m¼1

jZmj¼Zð0Þ

so that Fð�Þ � Fð0Þ, and the system is diamagnetic. When
N is even, mðN �mÞ has the same parity as m and Zm ¼
ð�1ÞmjZmj, leading to

Zð�Þ � Z0 þ 2
X1

m¼1

jZmj ¼ Zð�Þ

such that Fð�Þ � Fð�Þ. At zero temperature, the above
inequalities together with those obtained by Leggett read

Eð0Þ � Eð�Þ � Eð�Þ for N odd; (3)

Eð�Þ � Eð�Þ � Eð0Þ for N even: (4)

The previous results can be partially extended to unpo-
larized 1D systems withN" up andN# down electrons under
a spin conserving Hamiltonian. Introducing winding num-
bers m" and m# for the two species, we have

Zð�Þ ¼ X

m";m#

Zm";m#e
i�ðm"þm#Þ:

Using similar arguments as above, we find Zm";m# ¼
ð�1ÞjPm" jþjPm# jjZm";m# j and conclude that

Fð0Þ � Fð�Þ for N" and N# odd; (5)

Fð�Þ � Fð�Þ for N" and N# even: (6)

Those lower bounds are valid at arbitrary temperature.
Equations (3) and (4) for the polarized case and (5) and
(6) for unpolarized electrons are the central results of this
work.
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FIG. 1 (color online). Four different paths Rð�Þ of the path
integral (1). The winding numbers m are equal to (a) 0, (b) 0,
(c) �2 and (d) þ1. Path (b) does not contribute in 1D rings
because two particle lines cross, which is forbidden by antisym-
metry.

PRL 101, 106804 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

5 SEPTEMBER 2008

106804-2



We now consider rings with a number of electrons N ¼
N" þ N# ¼ 4n being a multiple of four, and characterize

the flux dependence of the free energy using the curvatures

C0ð�Þ ¼ @2F=@�2j�¼0ð�Þ

at � ¼ 0 and �. In the unpolarized case (N" ¼ N# ¼ 2n)
Eq. (6) applies, the free energy assumes a minimum at� ¼
�, and C� is positive. The curvature at zero flux C0 is not
constrained such that the two scenarios illustrated in Fig. 2
remain. (i) If C0 is negative, the system is paramagnetic
and lowers its energy in the presence of a magnetic flux.
(ii) If C0 > 0, the system is diamagnetic. In this case the
usual sinusoidal current-phase relation (F / � cos�) is
prohibited by C� > 0. There is a strong contribution of
the second harmonic in � and it exists at least one flux
value 0<�c < � where the free energy is maximum and
the persistent current vanishes. Without interaction, the
spin channels are independent and one finds case (i) by
applying Leggett’s inequality (4) to each of them. Case (ii)
is characteristic, for instance, of superconducting fluctua-
tions induced by a weak attractive interaction (in a super-
conductor, F / � cosð2�Þ and �c ¼ �=2).

The overall conclusion is that a simple diamagnetic
response is prohibited. The system must either be in a
paramagnetic state or have a superconductorlike current-
phase relation [17].

In order to illustrate the behavior of the curvatures C0

and C�, we consider 1D tight-binding rings of M sites,
described by the Hamiltonian

H ¼ X

�

XM

j¼1

f�tðcyjþ1;�cj;� þ H:c:Þ þ Vj;�nj;�g

þ XM

j¼1

ðU0nj;"nj;# þU1njþ1njÞ: (7)

Here, cyj;� creates an electron with spin � ¼ f"; #g on site j,
the random on-site energies Vj;� are drawn independently

from the interval ½�W=2; W=2�, and the kinetic energy
scale is given by the hopping amplitude t. We include
Hubbard on-site and nearest-neighbor interactions of
strength U0 and U1, respectively. The density operators

are defined as nj;� ¼ cyj;�cj;� and nj ¼ nj;" þ nj;#, and the

boundary condition cMþ1;� ¼ ei�c1;� accounts for a mag-

netic flux threading the ring.
We use the DMRG algorithm [15] adapted to disordered

systems [18] to calculate the ground-state energies and the
zero-temperature curvatures [19] for � ¼ 0 and � ¼ �,
fully taking into account the many-body correlations. For
the largest systems, 750 states per block are kept in the
DMRG iterations. All of the numerical results should, and
do, satisfy the relations (5) and (6).
In Fig. 3, we show the effect of an attractive interaction

on the curvature C0, for single realizations of disordered
quarter-filled Hubbard rings of sizes up to M ¼ 2N ¼ 32
sites withW ¼ t andU1 ¼ 0. For even N" ¼ N# (N ¼ 4n),
an attractive interaction reverses the sign of C0. Hence the
interactions induce a transition from scenario (i) to (ii) of
Fig. 2 and drive the system from paramagnetic towards
‘‘superconducting.’’ In contrast, the sign of C0 for odd
N" ¼ N# (N ¼ 4nþ 2) remains positive for all values of

U0, as dictated by (5).
A molecular realization of the N ¼ 4n case is cyclo-

octatetraene (C8H8, see the inset of Fig. 4), which consists
of a ring of eight carbon atoms with eight � electrons. In
Fig. 4, we plot the curvaturesC0 andC� as a function of the
nearest-neighbor interaction strength U1 for the model
Hamiltonian (7) with M ¼ 8 and W ¼ 0, using the pa-
rameters t ¼ 2:64 eV and U0 ¼ 8:9 eV given in Ref. [20]
for cyclooctatetraene (COT). Depending on the strength of
U1 (and the neglected longer range parts of the interaction),
the system can undergo a transition [21] from a paramag-
netic spin-density-wave (U1 � 4:6 eV and C0 < 0) to a
diamagnetic charge-density-wave (U1 � 4:6 eV and C0 >
0) ground state.
The presence of paramagnetism or orbital ferromagne-

tism [22] in COT is still a matter of debate [20,23]. A
ferromagnetic instability can occur in small paramagnetic
rings provided their inductance is large enough. Then, a
magnetic field fluctuation generates a current which re-
inforces the magnetic field. For small flux, the persistent

F

Φ

(i)

0 π

F

Φ

(ii)

0 Φc π

FIG. 2. Two possible flux-dependences of the free energy F for
N ¼ 4n with even N" ¼ N#, corresponding to paramagnetic (i)

and diamagnetic (ii) behavior.

FIG. 3 (color online). Curvatures C0 at zero temperature for
disordered quarter-filled Hubbard rings of different sizes M ¼
2N, as a function of U0, at U1 ¼ 0 and N" ¼ N#, for one disorder
realization with W ¼ t.
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current is I � C0e�=@ and the magnetic flux generated by
this current is � � �0eLI=@ (L � 1 nm is the typical
circumference of the molecule and �0L is its typical
inductance). The instability occurs when the magnetic field
generated current amplifies field fluctuations, i.e., when
C0 < 0 and X ¼ �0jC0je2L=@2 > 1. In our model, the
most pronounced negative curvature C0 � �5 eV occurs
in the spin-density-wave regime close to the transition at
U1 � 4:6 eV. We therefore have X & 3� 10�3, far from
the ferromagnetic instability. Moreover, Jahn-Teller distor-
tions in COT have been predicted [23] which would reduce
the curvatures.

An alternative to small molecules are rings made in
semiconductor heterostructures. Important progress has
been realized in the fabrication of such systems and 1D
rings with a single conduction channel could be produced.
Estimates show that one still has X � 1. Therefore, no
orbital ferromagnetism is to be expected, reminiscent with
the result for large 1D Luttinger liquid rings [24].

However, as illustrated by the results shown in Fig. 3, we
predict that changing the number of electrons by two (with
a back gate for instance) leads to a change of either the sign
of the magnetic response (paramagnetism) or the period-
icity of the response to a magnetic field (‘‘superconductor-
like’’). This could allow us to detect small attractive
interactions in those systems, whose presence is suggested
by the fact that so far only diamagnetic responses have
been observed in multichannel rings.

In conclusion, we have established general relations for
the sign of persistent currents in 1D rings that are the
counterpart of Leggett’s theorem for spinless fermions.
Both theorems depend on the topology of the system and
do not hold in higher dimensions or in the presence of a
side stub [25]. Our theorem is valid at arbitrary temperature
and also with spin. For spinless fermions, it implies that
interactions and disorder cannot affect the sign of the
persistent current. In particular, the possibility discussed
by Leggett of having maxima of the energy at integer and
half integer flux quantum, corresponding to a paramagnetic
signal in an assembly of rings, is ruled out by (3) and (4).
For electrons with spin, when Leggett’s theorem does not

apply, only the lower bounds (5) and (6) for the free energy
remain. This allows for a superconductorlike current-phase
relation when attractive electron-electron interactions
change the sign of the unconstrained curvature. The phe-
nomenological Hückel rule that cyclic molecules with
4nþ 2 electrons like benzene are aromatic while those
with 4n electrons are not is put on firm ground by our
theorem.
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FIG. 4. Curvatures C0 and C� as a function of U1 for an
unpolarized clean ring with M ¼ 8 at zero temperature, for the
parameters of COT (N ¼ 8, t ¼ 2:64 eV, U0 ¼ 8:9 eV). Inset:
Sketch of the C atom configuration in COT.
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