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The insulator-to-metal transition in hcp solid helium at high pressure is studied with first-principles
simulations. Diffusion quantum Monte Carlo (DMC) calculations predict that the band gap closes at a
density of 21.3 g/cm? and a pressure of 25.7 terapascals, which is 20% higher in density and 40% higher
in pressure than predicted by density functional calculations based on the generalized gradient approxi-
mation (GGA). The metallization density derived from GW calculations is found to be in very close
agreement with DMC predictions. The zero point motion of the nuclei had no effect on the metallization
density within the accuracy of the calculation. Finally, fit functions for the equation of state are presented,
and the magnitude of the electronic correlation effects left out of the GGA approximation are discussed.
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At low pressure, helium is an inert gas that exhibits a
very large electronic excitation gap of 19.8 eV and has
the highest ionization energy of all atoms, 24.6 eV. This
is because helium has no core electrons, so its valence
electrons are bound more strongly than in heavier atoms
where screening effects play a role. Given such a strong
binding, extreme pressures are needed to reach metalliza-
tion. After neon [1,2], solid helium is predicted to have the
highest metallization pressure among all elemental solids.

Metallic solid helium is expected to be present in the
outer layers of white dwarfs (WD) [3]. After the initial star
has exhausted all its nuclear fuel, it sheds its outer layer
and leaves behind a dense carbon-oxygen core of the size
of Earth that is surrounded by an envelope of pure helium,
hydrogen, or a mixture. The fossil star then spends the
remaining of its lifetime cooling until vanishing luminos-
ity. Measuring the luminosity of the oldest WD would
therefore constrain the age of the galaxy [4], which quali-
fies WDs as stellar chronometers.

Extracting the correct physics from WDs depends on
how consistent the cooling models are with the observed
luminosity [5]. Characterizing helium at high pressure is
important because its properties regulate the heat transport
across the outer layers. The metallization transition is
important because it marks the point where the heat trans-
fer switches from electronic conduction in interior WD
layers to photon diffusion in the exterior.

Most WD models rely on semianalytical descriptions in
the chemical picture [3] where one treats helium as a
collection of stable atoms, ions, and free electrons inter-
acting via approximate pair potentials. While such ap-
proaches work well at low density, they cannot describe
the complex interactions in a very dense system; hence, a
more fundamental description is required instead. First-
principle methods, such as density functional theory and
diffusion Monte Carlo (DMC) calculations, are necessary
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as they provide a full accounting of quantum and statistical
laws that govern the electrons and nuclei.

Properties of fluid helium up to 2 g/cm? have been the
subject of recent calculations. Kietzmann et al. [6] relied
on DFT and the generalized gradient approximation (GGA)
[7] to calculate the electrical conductivity. Kowalski et al.
[8] used hybrid methods to study the electrical and optical
properties and the EOS of fluid helium. Stixrude and
Jeanloz [9] studied the band gap closure in fluid helium
over a wide range of densities including conditions of giant
planet interiors.

In this Letter, we study the pressure metallization in
solid helium at densities above 2 g/cm’ using several
first-principle simulation techniques. Our intention is to
give an assessment of the accuracy of the widely used GGA
for calculating band gaps at extreme conditions by consid-
ering the GW approximation corrections and the accurate,
but expensive diffusion quantum Monte Carlo (DMC)
method. We study the effect of the zero point motion of
the nuclei on the band gap closure and finally derive the
equation of state (EOS). We expect our first-principle study
to serve as a guide for future laser experiments that are
planned to extend the EOS measurements to very high
pressures [10].

Our DFT calculations were performed with the ABINIT
plane-wave basis code [11]. The electron-nuclei interac-
tions were treated by a local Troullier-Martin norm-
conserving pseudopotential [12] with a core radius of 0.4
a.u. We use Perdew-Burke-Ernzerhof GGA [7] for the
exchange-correlation functional. We worked with an 8 X
8 X 8 Monkhorst-Pack k-point grid and a plane wave
energy cutoff of 230 Ha.

Mao et al. [13] have demonstrated experimentally that
solid helium still remains in the hcp solid phase up to high
pressures (57 GPa), apart from a limited fcc loop along the
melting line at low temperatures. As a consequence, we
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adopt the hcp solid structure and optimize the cell geome-
try iteratively until the pressure has converged to within
1%.

The band structure in the inset in Fig. 1 shows that solid
helium in the hcp structure exhibits an indirect band gap.
The lowest unoccupied state occurs at the I" wave vector.
The highest occupied state is at k = 0.95k,,, which is very
close to the M wave vector. Subsequently, we approximate
the excitation gap by the difference in energy between the
valence M point and the conduction I' point. As Fig. 1
shows, the band gap decreases almost linearly with in-
creasing density. GGA predicts the band gap closure at a
density of 17.4 g/cm?3, which corresponds to a pressure of
17.0 TPa.

Kohn-Sham GGA is known to systematically underesti-
mate the band gap. DMC calculation is expected to predict
the band gap width more accurately because it explicitly
includes electronic correlation effects. In fact, DMC has
been used successfully to describe the electronic ground
state in weakly as well as in strongly correlated systems
[14]. Excited states were also calculated reliably with
DMC [2,15].

Our DMC simulations were performed with the CASINO
code [16]. The trial wave function is of the Slater-Jastrow
form and the antisymmetry is maintained by the fixed-node
approximation. The electron-electron, electron-nucleus,
and electron-electron-nucleus terms in the Jastrow factor
were optimized by variance minimization. We use GGA
orbitals for the Slater part and keep the same pseudo-
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FIG. 1 (color online). Comparison of band gaps as a function
of density. DMC results for a small 2 X 1 X 1 rectangular super-
cell lie parallel and above the GGA gaps by 1.4 eV. DMC (4 X
2 X 2 rectangular cell) and GW metallization density of
21.3(1) g/cm?® are in agreement. GGA underestimates the
band gap by about 4 eV. The inset shows a part of the electronic
band structure including the indirect gap. The filled and open
circles indicate, respectively, the highest occupied valence state
at the M point and the lowest unoccupied conduction state at I'.
Two densities are shown. The insulating state (black curve) lies
below the metallic state (red dashed curve). The DMC error bars
are smaller than the DMC symbols.

potential as in DFT calculations. A conservative high
energy cutoff of 800 Ha is picked. For efficiency, the
orbitals are represented using blip functions [17]. The
results are well converged with a time step of 0.002 a.u.
To calculate the band gap, one electron, in either spin-up or
-down, is promoted from the valence band to the conduc-
tion band (M — I'). The calculations for the excited state
used the same Jastrow parameters as for the ground state
calculation because the DMC energy depends only on the
nodes of the trial wave function that are determined by the
Slater determinant.

Figure 1 shows the DMC band gaps to be larger than the
GGA results, as expected. The DMC curves for the 2 X
1 X 1 and 4 X 2 X 2 rectangular supercells lie parallel to
the GGA curve, hence showing a gap correction that is
independent of density. DMC simulations in a 4 X 2 X 2
rectangular cell predict a metallization density of
21.3(1) g/cm?. The 4 X 2 X 2 gap results are converged
with respect to system size because the ground state energy
agrees to better than 0.1 eV /el with triangular 3 X 3 X 3
supercells. The remaining finite size corrections are small
and mostly cancel out upon taking energy differences.

The 4 X 2 X 2 DMC band gaps agree very well with the
GW results, which also show a linear behavior with density
similar to the GGA and DMC calculations. The GW ap-
proximation has proven to be a reliable method for correct-
ing the GGA band gaps in a variety of materials [18]. Our
GW band gap corrections are calculated within an accu-
racy of 0.1 eV after converging the number of bands (50)
and plane waves (27 Ha). In comparison, the metallization
density is significantly higher than the DFT linear-muffin-
tin-orbitals prediction of 13.5 g/cm? for helium in the fcc
phase [19].

The trial wave function in DMC can be further improved
by adding a backflow correction to the Slater determinant.
This method introduces further correlation to the trial wave
function by replacing the electron coordinates in the deter-
minant by a set of collective coordinates. The DMC total
energy decreased slightly, but the band gap did not change
within error bars (0.02 eV).

Helium has a long thermal de Broglie wavelength due to
its low mass. According to [8,9], the disorder introduced by
the zero point motion of the nuclei could reduce the
metallization density. We study this effect by calculating
the band gap of configurations generated with path integral
Monte Carlo (PIMC) [20] simulations at different tempera-
tures between 500 and 5000 K. The helium interaction pair
potential was constructed by matching the forces [21] of a
density functional molecular dynamics (DFT-MD) simula-
tion at 5000 K. The accuracy of the potential was verified
by comparing the original DFT-MD pair correlation func-
tion with that of classical Monte Carlo simulations. The
computed GGA band gaps for the PIMC configurations
were in agreement with the perfect hcp lattice results,
within error bars. Hence, the zero point motion had no
effect on the band gap.
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DMC is computationally intensive since it scales as high
as O(aN? + bN?), where N is the number of electrons.
This limits the size of the supercell used to describe well all
the correlation effects of the infinite solid and therefore
introduces finite size errors. To first order, the independent-
particle finite size effects (IPFSE) dominate [22]. The error
arises from an incomplete k-point sampling of the
Brillouin zone in the DMC supercell. In DFT, the computa-
tional cost is directly proportional to the number of
k-points because the electrons are treated as independent
particles. In DMC, however, more k-points are included in
bigger cells, as long as they obey periodic boundary con-
ditions. To include the I' and M wave vectors into one
DMC band gap calculation, we have chosen rectangular
2 X 1X1 (16 electrons and 2 k-points) and 4 X 2 X 2
(128 electrons and 12 k-points) primitive unit cells. This
choice is prescribed by the boundary condition (k;b;) -
(l;a;) = 2w, ;m, where m is an integer, k;b;, [;a; are,
respectively, the components of the wave vector and the
supercell length along the reciprocal and Bravais primitive
vectors. We calculate the IPFSE from the formula, E,, =
ERMC + (E,, — Ey)9CA, where (Eo, — Ey)%S” can be cal-
culated cheaply with GGA, and corresponds to the differ-
ence between a converged GGA with respect to k-point
sampling and a GGA result for the same DMC cell size. By
comparing energies of different cell sizes, we determined
the energy to be converged for 3 X 3 X 3 triangular (108
electrons) cell sizes and bigger. The IPFSEs range from
0.07 eV/el up to 2.0 eV/el with increasing density.
Kinetic energy corrections of the order of 0.1 eV/el due
to long range correlations [23] are also included.

The Coulomb finite size effects (CFSE) are also consid-
ered. They emerge from treating the electronic correlations
periodically whereby the exchange-correlation (XC) en-
ergy would include periodic XC hole contributions. These
effects decay with system size as 1/N and tend to lower the
energy slightly. We avoid these effects by using the model
interaction potential (MPC) instead of the Ewald interac-
tion [14]. The difference between the total ground state
energies computed with these two interactions is
0.04 eV/el for the highest density. The error increases
with density because the periodic image charges are closer
in smaller volumes. We obtain very similar band gaps with
the Ewald and the MPC interactions. This is due to the
cancellation of CFSE errors when taking energy differ-
ences to calculate the gap.

After correcting the DMC ground state energies for
finite size effects, we compare with converged GGA en-
ergies, Eppr, calculations in Fig. 2. We estimate the corre-
lation energy that is missing in GGA in two ways. First, we
report the difference Epyc — Eppr for the 3 X3 X3
supercell. Second, we extrapolate the DMC energies in
Epmc — Eppr to infinite size as a function of 1/N using
a linear and a quadratic fit. This step involves DMC cal-
culations over different cell sizes. The resulting error bars
in Fig. 2(a) are small except for the highest density, i.e.,
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FIG. 2 (color online). Panel (a): Difference between DMC and
GGA ground state energies. We calculate the DMC energy in
two ways, by extrapolations to infinite cell size (circles) and by
directly using results from our largest 3 X 3 X 3 triangular
supercell (diamonds). In panel (b), we relate the DFT-DMC
energy difference to the amount of mechanical work needed to
reach a certain density. We plot the correlation fraction, (Eppy —
Epmc)/(Eppr — Eaom), Where Eyon = —79.0048 €V is the ex-
act energy of the isolated helium atom.

smallest volume. In the density range of consideration, the
correlation energy error in GGA is approximately constant,
0.36 eV/el.

The correlation error in GGA becomes less important
with increasing density because it stays constant while the
energy increases with compression. The relative impor-
tance of the correction energy is illustrated in Fig. 2(b),
where we compare the energy difference Eppc(p) —
Eppr(p) to the energy needed to compress helium to
density p, Eppr(p) — Eyom(p = 0). This choice for com-
parison does not depend on the zero of energy. Since DMC
yields the exact result for the helium atom, the correlation
ratio, [Epgr(p) — Epmc(p)l/LEprr(p) = Egyom(p = 0)],
approaches unity in the infinitely low density limit. In the
opposite high density limit, the graph shows how it tends to
zero as helium approaches the state of a one-component
plasma with a neutralizing background. The kinetic energy
of the homogeneous electron gas dominates the correlation
and eventually the Coulombic energy terms. GGA is ex-
pected to describe this limit well since the exchange-
correlation functional was derived from DMC simulations
of the homogeneous electron gas [24].

Since the corrections to the GGA energy appear to be
independent of density, there are no corrections to pres-
sures derived from GGA. We were able to represent our
zero-temperature static lattice GGA pressure data in the
insulating regime by a Vinet EOS curve [25] with the
parameters V, = 20.6397 cm?/mol as zero-pressure vol-
ume, By = 0.01928 GPa as bulk modulus, and Bj =
9.2153 as its derivative. The fit reproduced our GGA data
from 3 to 1200 GPa with an accuracy of 3%. The com-
parison with experiments [26] was studied in great detail
earlier [27].

It was not possible to extend the Vinet fit into the
metallic regime. Instead, we adopt a fit based on the
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FIG. 3 (color online). Pressure-volume relationship derived
from GGA calculations for solid helium. The experimental
Vinet fit [26], valid up to 57 GPa, agrees with the low pressure
Vinet fit of GGA data. The high pressure (HP) fit to the GGA
data approaches the free homogeneous electron gas (HEG). To
emphasize differences, PV3 was plotted in the main graph.

parametrization of the homogeneous electron gas energy.
This fit includes the kinetic, Coulombic, exchange as well
as correlation terms and, in this case, also ionic contribu-
tions, P(V) = o&x + 77 + § + 755 In units of GPa and
cm’/mol, the coefficients are a; = 3186.21, a, =
—2761.74, a; = —565.78, and a, = 854.71 where the
leading coefficient is taken from the free Fermi gas. The
fit reproduces our DFT data points from 1.2 to 1600 TPa
within 0.5%. In Fig. 3, we show the pressure over a large
density range. In the high density limit, the correlation
effects decrease, and the DFT pressure approaches the
free homogeneous electron gas behavior.

In conclusion, we have demonstrated that solid helium
reaches a metallic state at an extreme pressure of 25.7 TPa,
which is significantly larger than predicted by standard
GGA method. For WD interiors, this implies that the inner
layer of metallic helium is thinner and the outer region
where photon diffusion dominates the heat transport is
larger than previously predicted.

With quantum Monte Carlo, we have shown that stan-
dard GGA methods underestimate the band gap in solid
helium by 4 eV, which translates into an underestimation of
the metallization pressure by 40%. The GW band gap
corrections are in good agreement with DMC calculations,
which offers the possibility of using GW for correcting the
band gaps derived from GGA simulation of fluid helium at
high pressure and to make more realistic comparisons with
shock wave measurements of conductivity and reflectivity.

Finally, we determined the equation of state and pre-
sented a fit. We analyzed the correlation effects that are
missing in GGA and demonstrated that their importance
decreases relative to the total energy with increasing den-

sity as helium approaches the state of a one-component
plasma with a rigid neutralizing background.
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