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The coupling with the lattice vibrations is shown to drastically modify the state-of-the-art picture of the

excitonic states based on a frozen-atom approximation. The zero-point vibrations renormalize the bare

energies and optical strengths. Excitons acquire a nonradiative lifetime that decreases with increasing

temperature. The optical brightness turns out to be strongly temperature-dependent such as to induce

bright to dark (and vice versa) transitions. The finite-temperature experimental optical absorption spectra

of bulk Si and hexagonal BN are successfully explained without using any external parameter.
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The ab initio description of the excitonic states, obtained
by solving the Bethe-Salpeter (BS) equation of the many-
body perturbation theory, constitutes a well-established
approach to interpret the photoexcited properties of bulk
materials, surfaces, nanostructures, and organic or biomo-
lecules [1]. Although absorption and photoluminescence
experiments are usually performed at room temperature, in
the standard approach the BS equation is solved assuming
the atoms frozen in their crystallographic positions, thus
neglecting the effect of lattice vibrations. As a conse-
quence, excitons turn out to be insensitive to the tempera-
ture T and to have an infinite lifetime. This is in stark
contrast with the experimental results, where the absorp-
tion and emission lines at any temperature show an intrin-
sic width that reflects the finite lifetime of the underlying
excitonic states. Moreover, in bulk semiconductors, it is a
well-known fact that the absorption line position, width,
and intensity show a clear T dependence [2]. In the frozen-
atom BS equation, this dependence is not described at all.
Even in the T ! 0 limit, where atoms vibrate to fulfill the
uncertainty principle (zero-point vibrations), the calculated
absorption spectra is commonly convoluted with some
artificial, ad hoc numerical broadening function chosen
to yield the best agreement with the experiment. More
generally, the finite-temperature properties of the excitons
define their quantum efficiency as photoemitters, a key
parameter in devising materials for optoelectronic
applications.

Bulk silicon (Si) and hexagonal boron nitride (h-BN) are
two paradigmatic semiconductors whose optical properties
show remarkable differences. Si is one of the most deeply
investigated material in the ab initio community [1].
Although its optical properties have been studied in differ-
ent theoretical frameworks [1], the finite-temperature di-
electric function, measured by Lautenschlager and Jellison
[3] twenty years ago, remains still unexplained. While Si
has a small indirect gap, h-BN is a wide direct gap quasi-
two-dimensional semiconductor [4]. At difference with Si,
h-BN optical spectra are dominated by a bound exciton

with a large binding energy (� 0:7 eV). Very recent re-
sults by Watanabe, Taniguchi, and Kanda [5] stimulated
interest in this material for possible applications as an
ultraviolet laser device.
In this Letter, I solve, in a fully ab initio manner, the

Bethe-Salpeter equation including the coupling with the
lattice vibrations. The picture of the excitons obtained
within a frozen-atom approximation turns out to be deeply
modified, both at zero and finite temperature. Excitons
acquire a nonradiative lifetime, otherwise infinite in the
frozen-atom approximation. The finite-temperature optical
spectra of Si and h-BN are reproduced in excellent agree-
ment with the experimental results. The thermal properties
of the excitonic states are explained in terms of a weak (Si)
and a strong (h-BN) exciton-phonon coupling. In Si, the
lattice vibrations affect only the electron-hole substrate of
the excitonic states, while in h-BN, they participate ac-
tively in the exciton buildup. In h-BN, this strong coupling
induces bright to dark (and vice versa) transitions and
reduces, at zero temperature, the lowest exciton binding
energy by �30%.
In the frozen-atom (FA) BS equation, the excitonic

states j�FAi and energies EFA
� are eigenstates and eigenval-

ues of the HamiltonianHFA, written in the electron (e) hole
(h) basis [1]

HFA
ee0
hh0

¼ ðEe � EhÞ�eh;e0h0 þ ðfe � fhÞ�ee0
hh0
; (1)

with EeðhÞ and feðhÞ the quasielectron (hole) energies and

occupations.� is the Bethe-Salpeter kernel that is a sum of
a direct and an exchange electron-hole (e-h) scattering:
�ee0

hh0
¼ hehjW � 2Vje0h0i. W is the statically screened and

V is the bare Coulomb interaction. The absorption spec-
trum is given by the imaginary part of the dielectric func-
tion �2ð!Þ ¼ �ð8�=VÞP�jSFA� j2Im½ð!� EFA

� þ i�Þ�1�,
where SFA� ¼ hGSji�̂ � ~rj�FAi are the excitonic optical
strengths, � is a broadening parameter, V is the crystal

volume, and �̂ is the light polarization direction.
Equation (1) is ab initio because the single-particle ener-
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gies and the kernel � are calculated starting from density-
functional theory (DFT) wave functions and energies, with
no adjustable parameters [6]. In the standard approach, the
quasiparticle (QP) energies Ee;h, obtained within the GW

approximation for the electronic self-energy [1], are as-
sumed to be real and independent on T. This approxima-
tion is justified by the fact that the smallest excitation
energy in a semiconductor, the gap energy Eg, is usually

much larger than the thermal energy corresponding to
typical experimental temperatures, i.e., T � Eg=kb. The

HamiltonianHFA is then Hermitian [1] and T independent.
As a consequence, the energies EFA

� are real, and � is used
as an a posteriori parameter to mimic the experimental
broadening of the absorption peaks [7].

In the finite-temperature regime, the levels Ei acquire an
explicit dependence on the temperature: EiðTÞ ¼
Ei þ�EiðTÞ, with �EiðTÞ ¼ �Ee-ph

i ðTÞ þ �ETE
i ðTÞ.

�ETE is the thermal expansion (TE) contribution [2,8].
�Ee-ph represents the complex energy correction that arises
from the electron-phonon (e-ph) interaction. In this work,
the e-ph interaction is treated in the Heine, Allen, and
Cardona approach [2] where �Ee-ph can be rewritten in
terms of an e-ph coupling function g2Fið!Þ:

�Ee-ph
i ðTÞ ¼

Z
d!g2Fið!Þ½Nð!; TÞ þ 1=2�; (2)

with Nð!; TÞ ¼ ðe�! � 1Þ�1 being the Bose occupation
function. The complex g2Fi function is given by

g2Fið!Þ ¼ X
�

@Ei

@Nð!�; TÞ�ð!�!�Þ; (3)

with the sum is extended to all phonon modes � [9].

Equations (2) and (3) tell that Re½�Ee-ph
i � arises from the

quadratic contribution to the expansion of EiðTÞ � Ei in
the atomic displacements. As shown in Ref. [11], the QP
states can also decay emitting phonons, thus acquiring a

finite lifetime ( / 1=Im½�Ee-ph
i �).

The temperature dependence of the QP states, arising
from the e-ph interaction, modifies Eq. (1) [12]. As the
Ee;hðTÞ functions are complex, the BS Hamiltonian turns in

a non-Hermitian operator

Hee0
hh0
ðTÞ ¼ HFA

ee0
hh0

þ ½�EeðTÞ ��EhðTÞ��eh;e0h0 ; (4)

and the excitonic states are the solution of the eigenpro-
blem HðTÞj�ðTÞi ¼ E�ðTÞj�ðTÞi. The eigenstates j�ðTÞi
are linear combinations of e-h pairs: j�ðTÞi ¼P

ehA
�
ehðTÞjehi, with A�

eh ¼ hehj�i. If we plug this expan-

sion into the definition of the excitonic energies E�ðTÞ ¼
h�ðTÞjHj�ðTÞi, we get

E�ðTÞ ¼ h�ðTÞjHFAj�ðTÞi
þX

eh

jA�
ehðTÞj2½�EeðTÞ � �EhðTÞ�: (5)

Using Eq. (2) and neglecting the TE term, Eq. (5) yields

Re ½�E�ðTÞ� ¼ ½h�ðTÞjHFAj�ðTÞi � h�FAjHFAj�FAi�
þ

Z
d!Re½g2F�ð!; TÞ�½Nð!; TÞ þ 1=2�;

(6)

Im ½E�ðTÞ� ¼
Z

d!Im½g2F�ð!; TÞ�½Nð!; TÞ þ 1=2�;
(7)

where �E�ðTÞ ¼ E�ðTÞ � EFA
� and I have introduced the

exciton-phonon coupling function g2F�ð!; TÞ ¼P
ehjA�

ehðTÞj2½g2Feð!Þ � g2Fhð!Þ�. Equations (6) and (7)

constitute a key result of this work. Equation (7) defines, in
an ab initio manner, the nonradiative excitonic lifetime
	�nr ¼ f2Im½E�ðTÞ�g�1 that is otherwise infinite in the FA
approximation. The dielectric function now depends ex-
plicitly on T: �2ð!; TÞ ¼ �ð8�=VÞP�jS�ðTÞj2Imf½!�
E�ðTÞ��1g, and no damping parameter � is needed
anymore.
Equation (6) defines the temperature dependence of the

excitonic energies and is composed of two contributions:
The integral of the g2F� function arises from the renor-
malization of the electron-hole pairs jehi that constitute the
excitonic packet (with amplitudes A�

eh). This term repre-

sents an incoherent contribution, where the electrons and
holes interact separately with the lattice vibrations. The
first term, instead, describes an active participation of the
phonon modes in the excitonic state buildup. It is, then, a
coherent contribution that modifies the A�

eh components

and vanishes when j�ðTÞi ¼ j�FAi. Thus Eqs. (6) and (7)
define two physical regimes of the exciton-phonon inter-
action: In the weak coupling case, j�ðTÞi � j�FAi, and the
incoherent contribution is dominant (this is the case of Si).
h-BN, instead, belongs to the strong coupling case, where
the coherent term in Eq. (6) cannot be neglected.
A remarkable property of Eqs. (6) and (7) is that,

although Nð!; T ! 0Þ ¼ 0, the excitonic energies do not
reduce to the FA values and the excitonic lifetimes remain
finite when T ! 0, because of the 1=2 factor. This factor
arises from the quantum-mechanical vibrations of the
atoms when T ¼ 0 (the so-called zero-point vibrations
[13]).
The experimental finite-temperature optical spectra of Si

[3], shown in Fig. 1, are dominated by two excitonic peaks
(E1 and E2) resonant with the electron-hole continuum and
characterized by a moderate e-h attraction. As the tem-
perature increases, the E1;2 peaks move towards lower

energies, with a width that increases with T. This gradual
redshift has been studied only in an independent-particle
approximation (IPA) [11], thus neglecting excitonic ef-
fects. While the IPA shows only a weak dependence on
T, both the peak position and widths of the E1;2 peaks are

well reproduced by the results of the finite-T BS equation,
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shown in Fig. 1. Excitons acquire a finite damping that,
starting from �30 meV at T ¼ 0 K and increasing to
�60 meV at room temperature and �150 meV at T ¼
676 K, is in excellent agreement with the experimental
estimations [11]. Compared with the frozen-atom BS equa-
tion, the position of the E1 and E2 peaks at T ¼ 0 is
redshifted by 80 meV, to correct the deviation of previous
calculations from the experimental spectrum [7].

The g2F� function can be now used to pin down the
phonon modes that contribute to the redshift of the E1;2

peaks. In the inset in Fig. 1 , the Re½g2F�ð!Þ� for the E1

state shows that the exciton is mainly coupled with the
optical phonons (60 meV peak), with the acoustic branches
giving only a small correction. As the temperature in-
creases, the phonon population N in Eqs. (6) and (7) also
increases, thus enhancing the redshift and the width of the
optical peaks and leading to a linear scaling with the
temperature when T � 200 K and Nð!; TÞ � 1=�T. A
more careful analysis of the different contributions to
�E�ðTÞ given by Eq. (6) shows that the incoherent con-
tribution [second term in the right-hand side of Eq. (6)] is
dominant. This is due to the fact that the moderate e-h
attraction prevents the E1;2 excitons to behave as a unique,

bosoniclike, particles. Consequently, the lattice vibrations
mainly couple with the e-h substrate of the excitons. It
is important to note that, in this case, Eqs. (6) and (7) can
be simplified using the result of the FA BS equation,
as �E�ðTÞ �

R
d!Im½g2F�ð!Þ�½Nð!; TÞ þ 1=2�, with

j�ðTÞi � j�FAi.
h-BN is an anisotropic, insulating compound, consisting

of graphitelike sheets with an hexagonal structure arranged
in an ABAB . . . stacking [4]. The optical and electronic
properties as well as the lattice dynamics [14] are strongly
influenced by the layered structure. The in-plane experi-
mental optical absorption spectrum measured at room
temperature [15] is shown in Fig. 1, lower frames. Three
prominent peaks are clearly distinguishable: a bound state
B1 at 5.98 eVand two resonant states R1 at 6.87 eVand R2

at 14.7 eV. The frozen-atom BS equation predicts the three
peak energies to be 5.75, 6.6 , and 14.2 eV [16] and 0.1–
0.5 eV redshifted if compared to the experiment.
The room-temperature solution of the BS equation is

compared with the experiment in Fig. 1. Both experimental
peak positions and widths are well described, and the B1,
R1, and R2 states are blueshifted by 0.07, 0.17, and 0.3 eV
compared to the frozen-atom BS equation results. The
different sign of the phonon-induced corrections of the
excitonic peak positions is the first striking difference
with the case of Si and can be understood by looking at
the function Re½g2F�ð!Þ� for the B1 state, shown in the
inset in Fig. 1. The anisotropic structure of h-BN is re-
flected in the rich series of phonon peaks in the g2F�

function. The phonon modes corresponding to the peaks
at �30 and �75 meV are polarized perpendicularly to the
hexagonal layers [14]. As the bound excitons are spatially
confined within the layer [16], these modes tend to stretch
the layers, thus increasing the exciton localization and,
consequently, its binding energy. The high-energy modes
(! � 100 meV), instead, are polarized parallel to the
layer. These modes correspond to in-plane vibrations that
interfere with the binding of the e-h pairs embodied in the
excitonic state, counteracting the excitonic localization.
Their stronger positive contribution to the g2F� function
causes an overall blueshift of the absorption peaks and a
reduction of the exciton binding energy. Similarly to the
case of Si, the h-BN QP optical gap is shrank by the
electron-phonon coupling by 0.12 eV. Thus we get an
overall reduction of the lowest exciton binding energy of
0.2 eV that is 30% of the value obtained by neglecting the
exciton-phonon coupling (0.72 eV).
The thermal evolution of the excitonic energies and

optical strengths jS�ðTÞj2 for the near-gap excitons is
shown in Fig. 2. The size of the circles is proportional to
jS�j2. The opposite contribution to the g2F� function of the
low- and high-energy phonons makes the excitonic ener-
gies almost constant for T � 500 K, in agreement with the
experimental observation [17]. In contrast, the excitonic
optical strength drastically depends on the temperature. We
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FIG. 1 (color online). Optical absorption of bulk Si (upper
frames) for several temperatures and of h-BN (lower frames)
at room temperature. The experimental spectra [3,15] (circles)
are compared with the BS equation (solid line) and with the
independent-particle approximation (dotted-dashed line). In the
insets, the exciton-phonon spectral functions Re½g2F�ð!; T ¼
0Þ� are shown for the E1 (Si) and B1 (h-BN) peaks (see text). The
width of the absorption peaks reflects the damping of the
excitons due to the scattering with phonons. No additional
numerical damping is included. The excitonic energies obtained
within the frozen-atom BS equation (represented by the vertical
dashed lines) are redshifted in Si and blueshifted in h-BN.
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see that the R1 (resonant) and the B2 (bound) excitons
undergo a bright to dark (and vice versa) transition at

room temperature. Indeed, we have that S�ðTÞ � SFA� ¼
hGSjei�̂� ~r½j�ðTÞi � j�FAi�, so that this astonishing effect is
entirely due to the coherent contribution �½E�ðTÞ�, given
by the first term in Eq. (6).

From Fig. 2, we notice that the B2 and R1 transitions
occur only when a bundle of states get close in energy. The
B2 state, for example, acquires optical strength only when
it approaches the B3 state. The microscopical mechanism
of the bright to dark (and vice versa) transitions is, then, a
transfer of optical strength between energetically close
excitonic states. In the case of the B2 exciton, for example,
this process occurs by means of a mixing with the B3 state
that induces an increase of the contribution from bands
with different parity in the e-h pairs embodied in the B2

state. This induces a finite dipole and a finite absorption
cross section. In the case of resonant excitons (with energy
larger than the optical gap Eg), this hybridization is pos-

sible because of the continuum e-h substrate which con-
nects the states. However, the bound excitons are discrete
states, and the e-h substrate is replaced by the energy
indetermination due to the finite damping. This is con-
firmed by a calculation of the h-BN excitons done neglect-
ing the exciton damping, imposing the E�ðTÞ to be real. In
this case the three bound states B1;2;3 energies E�ðTÞ never
cross, and the B2 state remains dark at all temperatures.

In conclusion, the electron-phonon coupling induces a
severe modification of the frozen-atom picture of the ex-
citonic states both at zero and at finite temperatures. The
proposed finite-temperature Bethe-Salpeter equation de-

scribes, in a fully ab initio manner, a wealth of new
physical features and makes clear that a proper and accu-
rate description of the excitonic states in semiconductors
and insulators cannot disregard the coupling with the lat-
tice vibrations.
The author thanks X. Gonze, M. Cardona, and L. Wirtz

for fruitful discussions and C. Hogan for a critical reading.
I acknowledge support by the European Network of
Excellence NQ (NMP4-CT-2004-500198).

[1] For a review, see G. Onida, L. Reining, and A. Rubio, Rev.
Mod. Phys. 74, 601 (2002).

[2] For a review, see M. Cardona, Solid State Commun. 133, 3
(2005).

[3] P. Lautenschlager, M. Garriga, L. Viña, and M. Cardona,
Phys. Rev. B 36, 4821 (1987); G. E. Jellison, Jr. and F. A.
Modine, ibid. 27, 7466 (1983).

[4] Yong-Nian Xu and W.Y. Ching, Phys. Rev. B 44, 7787
(1991).

[5] K. Watanabe, T. Taniguchi, and H. Kanda, Nature Mater.
3, 404 (2004).

[6] DFT calculations are performed in the local density ap-
proximation (LDA) using a plane-wave basis. Excitonic
and QP (in the case of h-BN) calculations have been done
using the YAMBO code: http://www.yambo-code.org. Si
QP corrections have been taken from M. S. Hybertsen
and S.G. Louie, Phys. Rev. B 34, 5390 (1986).

[7] M. Cardona, L. F. Lastras-Martı́nez, and D. E. Aspnes,
Phys. Rev. Lett. 83, 3970 (1999).

[8] W. Paszkowicz, J. B. Pelka, M. Knapp, T. Szyszko and S.
Podsiadlo, Appl. Phys. A 75, 431 (2002).

[9] The @Ei

@N factors and the phonon frequencies used to evalu-
ate �Ee-ph were calculated ab initio using the density-
functional perturbation theory in the LDA approximation
[10].

[10] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi,
Rev. Mod. Phys. 73, 515 (2001); PWscf project, http://
www.pwscf.org/.

[11] P. Lautenschlager, P. B. Allen, and M. Cardona, Phys. Rev.
B 31, 2163 (1985); 33, 5501 (1986).

[12] The coupling with the nuclear vibrations causes an addi-
tional scattering of the jehi pairs with the phonon modes
that modifies the BS kernel. However, this correction is
negligible for the systems considered in this work.

[13] As shown by L. F. Lastras-Martnez et al., Phys. Rev. B 61,
12946 (2000), the isotope effect can be used to measure
the zero-point renormalization of the dielectric function.

[14] J. Serrano, A. Bosak, R. Arenal, M. Krisch, K. Watanabe,
T. Taniguchi, H. Kanda, A. Rubio, and L. Wirtz, Phys.
Rev. Lett. 98, 095503 (2007).

[15] C. Tarrio and S. E. Schnatterly, Phys. Rev. B 40, 7852
(1989).
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FIG. 2. Temperature dependence of the energies and oscillator
strengths of the near-gap excitons (bound and resonant) in h-BN.
The dashed line indicates the energy position of the optical gap
in the independent-particle approximation. The sizes of the
circles are proportional to the excitonic optical strength. The
darker circles at T ¼ 0 is the result obtained neglecting exciton-
phonon coupling. At T ¼ 0 we observe a 30% reduction of the
B1 exciton binding energy due to the zero-point lattice vibra-
tions. The B2 and R1 excitons, instead, undergo a bright to dark
(and vice versa) transition at room temperature (see text).
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