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We show that a system of Josephson junctions coupled via low-resistance tunneling contacts to
graphene substrate(s) may effectively operate as a current switching device. The effect is based on the
dissipation-driven superconductor-to-insulator quantum phase transition, which happens due to the inter-
play of the Josephson effect and Coulomb blockade. Coupling to a graphene substrate with gapless
excitations further enhances charge fluctuations favoring superconductivity. The effect is shown to scale
exponentially with the Fermi energy in graphene, which can be controlled by the gate voltage. We develop
a theory that quantitatively describes the quantum phase transition in a two-dimensional Josephson
junction array, but it is expected to provide a reliable qualitative description for one-dimensional systems

as well.
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Artificially fabricated Josephson-junction arrays (JJA)
offer a unique playground for studying quantum phase
transitions (QPT) [1]. The transitions in JJA occur due to
the competition between the Josephson coupling Ej,
which favors a globally ordered state, and the charging
energy E., which leads to Coulomb blockade of Cooper-
pair tunneling and enhances quantum fluctuations of
the superconducting (SC) phase. At zero temperature, the
QPT from a globally superconducting to an insulating
phase [2-5] occurs, roughly, when the Josephson energy
E; becomes smaller than the charging energy. Another
key factor in determining the ground state is dissipation,
which is present whenever the SC system is connected
to a reservoir of gapless single-particle excitations [6].
The main effect of the dissipation in JJA is a suppres-
sion of quantum phase fluctuations. Taking into account
the phase-charge uncertainty relation, the dissipation en-
hances fluctuations of the charge and, hence, stabilizes
the SC phase [7]. This type of dissipative QPT has been
considered previously by Feigel’man and Larkin [8] in
the model of a regular 2D proximity-coupled JJA and by
Galitski and Larkin [9] in a disorder-induced random
Josephson network. In both cases, it was found that
the effect of dissipation on the transition point is expo-
nential; 1i.e., the critical Josephson coupling scales
exponentially with the Andreev conductance. The
Andreev conductance and hence the degree to which the
stabilizing effect of dissipation is important obviously
depend on the density of states of gapless excitations.
Thus, by controlling the latter, one can tune transitions
between a global superconductor and an insulator. This
observation provides strong motivation for studying
superconductors coupled to a graphene substrate, where
the density of carriers can be tuned by gate voltage from
essentially zero at the Dirac point (no “Ohmic™ dissipa-
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tion) to large values in the electron-doped graphene (strong
dissipation).

In this Letter, we propose to study the superconductor-
insulator phase transition (SIT) in a JJA in a tunneling
contact with a graphene layer (or layers) (see Fig. 1), which
acts as a source of gapless quasiparticles. The graphene
substrate provides a unique possibility to control the dis-
sipation strength via the gate voltage and thereby tune the
dissipation-driven QPT. Hence, the system may be used as
a current switching device. While the physics of the under-
lying effect is intuitively clear, the formal description of
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FIG. 1 (color online). (a) JJA on top of a graphene sheet is
shown. The grains are coupled by the Josephson junctions with
the coupling strength E;. The distance between the grains L is
assumed to be large compared to the SC coherence length £.
Thus, the coherent transport through the graphene is neglected
here. Alternatively, SC grains in the array can be coupled to
different graphene sheets. Then, there is no coherent transport
through the graphene due to physical separation between the
sheets. (b) The superconductor-graphene interface. The graphene
and superconductor are connected through the tunnel barrier.
The chemical potential in graphene can be tuned with the gate
voltage V.
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the transition developed in this Letter is technically non-
trivial: First, we use the tunneling Hamiltonian formalism
and elements of random matrix theory to derive the effec-
tive phase fluctuation action of a small SC grain coupled to
a graphene substrate. The dissipation kernel K(7) shows a
crossover from the Ohmic dissipation behavior K(7) o« 772
in the electron-doped graphene to extremely weak dissipa-
tion K(7) « 7~* at the Dirac point. Second, we develop a
mean-field theory of the SIT and show that the quantum
critical point is determined by the single-grain phase cor-
relator. To calculate the phase correlator, we use the two-
loop renormalization group (RG) results from a related
spin model and determine a critical voltage V.. at which
the transition occurs: For V >V, the system is a super-
conductor; for V <V, the system is an insulator.

Our theoretical model is an array of SC grains connected
with each other with the Josephson junctions and con-
nected via tunnel contacts to a graphene substrate; see
Fig. 1. For T — 0, one can neglect massive fluctuations
of the amplitude of the order parameter A in the grain, and
describe the dynamics of the system in terms of the phase-
only imaginary-time effective action (A = 1)

.2
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with ¢; being the phase of the order parameter on the ith
grain. Here, for simplicity, we assume that the Josephson
and charging energy are the same for all grains. However,
this assumption is not essential for our results.

We now consider the effect of graphene gapless ex-
citations on the phase coherence of a single SC grain.
We study here the situation when the SC grain lies on
top of the graphene sheet; see Fig. 1. In this planar ge-
ometry the tunnel junction does not break internal
symmetries of graphene, and thus does not modify the
spectrum of the excitations. In the limit of low trans-
parency tunnel barrier, the transport between supercon-
ductor and graphene can be described by the tunneling
Hamiltonian Hy = t/d_y, [, Er[V(r)W © ) + H.c.]
with \Ifff)(r) and W_(r) being the electron operators
in graphene and superconductor, respectively. Here d,
is the thickness of the grain, + and A are the tunnel-
ing matrix element and the area of the junction,
respectively.

Assuming that the SC gap energy is sufficiently large,
the main contribution to the subgap transport originates
from Andreev processes, which involve correlated tunnel-
ing of two electrons from or to the graphene. In the fourth
order perturbation theory in tunneling ¢ (see Fig. 2), the
contribution of the Andreev processes to the dynamics of
the phase is given by the following effective action

[T dxiRe[F*(xy, x2)Fx3, x4)G)(x1, x3)G' (x5, x4)] )

with x = {r, 7}. Here G®(x, x') and F(x;x’) are imaginary-time Green’s functions for graphene and superconductor,

respectively. The latter is defined as

F(x),x,) = _eM(”)+¢(T2)]/22Xn(r1)/\/n("2)”;1Un[®(7'1 — m)e BNTRIO(E,) — O(r, — T)e BMTO(-E,)]

n

Here E, = ve2 + A?, u, and v, are Bogoliubov coher-
ence factors u2/v2 = (1 + &,/E,)/2,and &, and y,,(r) are
the eigenvalues and eigenfunctions of the single-particle
Hamiltonian of the grain, which includes random potential
due to impurities and boundaries of the island.

In order to derive low-energy effective action S, due to
the Andreev processes, it is convenient to separate the fast
and slow times k and 7: 7y = 7+ k/2and 7, = 7 — k/2.
Since the SC Green’s function decays exponentially on the
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FIG. 2 (color online). The diagrams describing the correlated
two-electron tunneling process (Andreev process) are shown.

[
time scale of order A~!, one can neglect « in the dynamics
of the phase, which evolves on much longer time scales.
Performing the integral over the fast time scales, we obtain
for S A

S, ~ 24[461%,[/4 [ dridrdr cos[p(r) — p(7')]
i=1,d 3)

X F12F34G(]%)(T - 'Tl)Ggﬂ)(T/ - 'T).

Here F;; is the anomalous Green’s function at zero fre-
quency, i.e., Fy; = _Zn/\/n(ri)Xn(rj)A/E%l'

It is well known that Andreev transport is sensitive to
disorder [10]. Therefore, in order to calculate the effective
action, one has to take into account spatial correlations
[10,11], and average S, over the random realization of the
wave functions in the SC grain resulting from the scatter-
ing of electrons from the grain boundaries and impurities.
We perform this averaging using exact eigenstate method
assuming that the grain is sufficiently small. Our approach
accounts for the enhancement of the tunneling rate due to
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the coherent backscattering of electrons to the tunnel junc-
tion. The correlation function (¥, F34) in the grain consists
of reducible and irreducible parts: (F|,F34) = (F5) X
(F4) + (F2F34);,. The reducible part can be easily calcu-
lated

Si(Kelry = 12l) -yt

<F12>__VFf12’ and f,= —
kplry —r;|

4

where kg, [, and vy are the Fermi wave vector, mean free
path, and density of states at the Fermi level, respectively.

The irreducible correlation function is obtained assum-
ing that the Thouless energy E; is the largest relevant
energy scale in the problem E; ~D/R?>> A E, E,,
where D and R are the diffusion constant and radius of
the grain. In this limit, the electron diffusion time in the
grain 7, = 1/E; is much smaller than the time the system
dwells in the virtual state with one unpaired electron
~1/A. Since an electron in the virtual state covers the
entire available phase space, one can calculate the irreduc-
ible correlation function within random matrix theory [12]

finding that it acquires the universal form (F|,Fz4); =

%?(fmf23 + f13f24). Combining this equation with
Eq. (4), we obtain (FyF3y)= ”TZV%flzf% +3 X
%v%(foB + f13f24), where & is level spacing in the
grain. Then, by substituting the above expression into
Eq. (3), and carrying out the spatial integrals, we obtain
ensemble-averaged Sy:

=~ —G[deT/K(T — 7 cos[d(7) — d(7)].  (5)

Here G = W is the dimensionless constant defining

the transparency of the tunnel barrier and v is the graphene
Fermi velocity. The dissipation kernel K(7 — 7/) is defined
in terms of the graphene Green’s functions (see, e.g.,
Ref. [13]); ie, K(r— 7)o GE(r—r)GE( ).
Assuming that the chemical potential w = 0, the ker-
nel K(7) is given by the function K(7) = w{(,un')2 +

2[1 — pl7|]e~#!7 — 1}, which exhibits a crossover from
7~% at the Dirac point (here we neglect smearing of the
Dirac point due to charge disorder fluctuations [14]) to the
usual Ohmic behavior 772 at u|7| ~ 1. For realistic ex-
perimental parameters w ! is much smaller than the char-
acteristic time scale for the phase dynamics 7 < E. !, i.e.,
wm > E.. Hence,

,cos[(7) — $(7)] e
[dd o =G
(6)

The important difference between dissipative action (6)
and the one describing resistively shunted Josephson junc-
tion is that action (6) is “‘compact,” and thus correctly
describes the fact that the charge on the grain is quantized
and can change by 2e only. From Eq. (6), we see that

graphene as a source of gapless excitations provides the
possibility to change the dissipation strength directly by
changing w, which is tied to the gate voltage.

Dissipation-driven QPT.—Combining Eqgs. (1) and (6),
we obtain the full action for the system: S = S¢c + §; +
S4. To derive effective action describing the transition in
the JJA, we first write a partition function in path integral
representation and then use Hubbard-Stratonovich trans-
formation to decouple the Josephson term by introducing
an auxiliary field ;(7) coupled linearly to ¢/¢:("). Then, the
partition function becomes Z = Z; [ Dy exp(—S[]),
where S[/] is given by

Sl = [[ars S v
Lj

- ln<exp|:% [dTZei‘Pf(T)zﬁf(T) + H.c.])o. 7)

Here we introduced the symmetric matrix w;;, which de-
scribes Josephson tunneling: matrix elements of w;; are
equal to E; for nearest neighbors and zero otherwise. The
expectation value in Eq. (7) is taken with respect to the
single-site action Sy = Sc + S4. To study QPT at the
mean-field level, we perform cumulant expansion of the
second term in the action S[ /] in powers of ¢ and arrive at
the effective complex ¢* field theory [15]. The phase
boundary between macroscopically superconducting and
insulating state of JJA can be obtained by setting the

coefficient r in front of |]|*> to zero: ro L —1X
ZEy 2

[dr{e’#~ieO) = 0. (Here 7 is the coordination number

of the lattice and averaging is taken with respect to S.)
When calculating the correlation function we assume that
the dissipation strength n >> 1. Then, the second term in
Sy dominates at low frequencies and one can neglect the
influence of the charging energy term S, which serves as
the ultraviolet cutoff. Under these conditions, the correla-
tion function can be mapped on the long-range ferromag-
netic spin chain [16—18] first considered by Kosterlitz [16].
Later, the critical behavior was studied in Ref. [18], where
the asymptotic behavior of the spin-spin correlation func-
tion was obtained using two-loop RG. Adopting the results
of Refs. [8,16,18] to our problem, we get

(3)1/27#7]

-1
(i ~ig0) {(;)2 AM<r<r,
T

T> T,

®)

where A ~ 27E_.m is the ultraviolet cutoff and 7. is the
correlation time, which can be calculated using the RG for
7. Since the compact dissipation term proportional to 7 is
not Gaussian, it gets renormalized when integrating out
high-frequency degrees of freedom resulting in the follow-
ing flow equations:

dn 1 1 ©)
dIn(A7) 272 27y’

Here the right-hand side is the beginning of a Taylor
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FIG. 3 (color online). Phase diagram for the SIT is shown. By
tuning the applied gate voltage V,, one can change the density of
states of gapless excitations in graphene, and thus drive the phase
transition between globally superconducting and insulating
states of JJA. The solid (black) line represents the region of
the validity of RG.

expansion in 1/7. By integrating this equation between the
initial value 1(0) = 7 and final value 27?n(In[A7.]) ~ 1,
we can estimate the correlation time as

7.~ (4mE.m?) " exp(2m’n). (10)

Using Egs. (8) and (10) and carrying out the time integra-
tion, we find an expression defining the phase boundary
C.E; = 41 E n? exp(—27*n.), where C, is a numerical
constant depending on z. The right-hand side of the above
equation corresponds to the effective charging energy of
the grain E} renormalized by the dissipation [19]. By
inverting the transcendent algebraic equation above, we
can express the critical voltage V. at which the QPT occurs
in terms of the Lambert W function

V. 1 ,WCZEJ)
= q[-w_ (- ) 11
Vo W\J W ‘( 4AE, (1)

where V, = :7’”5 The phase boundary between globally

superconducting and insulating phases of JJA is shown in
Fig. 3. For the theory based on the RG procedure to be
formally valid, we need In(E./E;) > 1. This, however, is
a mathematical rather than physical constraint, and for all
practical purposes (i.e., experiment) what is important is
the existence of the transition itself; the applicability of RG
methods and the exact location of the nonuniversal “criti-
cal voltage” are not essential. A sharp transition should
certainly exist if E. > E; and perhaps even for E, = E,.
In the opposite limit the system is already superconducting
without any substrate and there is no dissipation-driven
effect. Since the technology for making SC grains with
required E./E; is well developed, the observation of the
QPT is certainly feasible.

We also emphasize here that since the dissipation-driven
QFT is intrinsically local, it is expected to survive in one-
dimensional chains (where the mean-field theory breaks
down and the QPT is of Kosterlitz-Thouless type [20]).

Again, the exact location of the transition point and the
critical behavior would be different, but the effect itself
should be present. Moreover, the same local argument
suggests that a sharp voltage-induced crossover (cf. with
the model of a shunt resistor coupled locally to the SC
grain [21,22]) in the IV curves should be present even in
finite chains proximity coupled to graphene, similar to
those that are already being experimentally investigated
[23,24]. We propose that experiments be carried out in the
SC-graphene system to directly confirm our QFT and
current switching predictions.
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