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Crumpled membranes have been found to be characterized by complex patterns of spatially seemingly

random facets separated by narrow ridges of high elastic energy. We demonstrate by numerical

simulations that compression of stiff elastic membranes with small randomness in their initial configu-

rations leads to either random ridge configurations (high entropy) or nearly deterministic folds (low elastic

energy). For folding with symmetric ridge configurations to appear in part of the crumpling processes, the

crumpling rate must be slow enough. Folding stops when the thickness of the folded structure becomes

important, and crumpling continues thereafter as a random process.
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The crumpling of thin membranes is a common daily
phenomenon, but it also has, on microscopic scales, inter-
esting biological applications in, e.g., lipid membranes,
vesicles, and virus capsids. Experiments are obviously
much easier to do on thin sheets of common materials
[1–5] in macroscopic scales, and they can be used to search
for generic properties independent of the material or the
scale. Crumpling a thin membrane so as to fit a confined
volume has obviously a very large number of possible
solutions. Crumpling of two similar sheets of paper will
practically always result in two different crumpled con-
figurations. It means that a crumpled sheet is in a state of
high entropy, and two similar crumpled configurations
cannot be found. This is consistent also with the crumpling
experiments referred to above, and with simulation results
[6–10]. Even though crumpled sheets are in a state of high
entropy, not all possible fold patterns appear with equal
possibility. In a slow enough deformation of an elastic
body, configurations with low elastic energy are more
likely to appear. Slow crumpling of a membrane can thus
be considered as a ‘‘competition’’ between states of high
entropy and low energy.

It would be very difficult to determine the distribution of
crumpled structures of an elastic membrane as it would
require determination of the entire energy landscape of the
possible configurations of the membrane. Such an energy
landscape is expected to be very complicated. In most
experimental situations it is also not possible to explore
that landscape because friction and/or plastic deformation
effectively hinder the membrane to continuously change its
configuration under crumpling so as to relax towards con-
figurations of minimal elastic energy.

Using numerical simulations it is, however, easy to
consider elastic membranes without friction and with no
possibility of plastic deformations. We can thus address the
question of whether crumpling of such a membrane is
indeed dominated by entropy or is it at least partly domi-
nated by only a few energetically favorable fold patterns.

We demonstrate here that initially flat elastic membranes
compactify with fairly equal probabilities into random
crumpled configurations of high elastic energy and highly
symmetric folded configurations of low elastic energy,
when confined inside a spherical shell of slowly decreasing
radius and there is no friction. The final configurations are
very sensitive to initial conditions, but, at the same time,
distinctly different initial conditions may lead to very
similar final configurations.
To simulate the crumpling of a membrane we use a

discrete-element method. Our simulation model consists
of a triangular lattice with lattice spacing a and sites
connected by massless beams with bending, shear, and ten-
sile stiffness. These beams are viscoelastic Timoshenko
beams [11] with a large rotation formulation [12]. They
have width a, Young’s modulus Yb, and Poisson ratio � ¼
1
3 . Self-avoidance of the membrane is introduced via an

elastic frictionless sphere with radius a=2, mass m, and
Young’s modulus Ys ¼ Yb at each lattice site. Only spheres
beyond nearest neighbors are allowed to interact in order to
avoid affecting the in-plane compressibility of the mem-
brane. The full dynamics of the system is simulated by
solving Newton’s equations of motion.
In our simulations a rectangular membrane was placed

inside a spherical shell of decreasing radius R, as shown in
Fig. 1(a). Perturbations to the initial configurations were
introduced by random variations in the initial height coor-
dinate at each lattice site. These variations were chosen
such that all deformation wavelengths were present, and
the magnitude of each variation was proportional to its
related wavelength. The maximum variation was of the
order of membrane thickness. Other ways to introduce
randomness (random forces and different magnitudes of
height-coordinate variations) were also tested without
qualitative changes in the results.
The behavior of the membrane is characterized by the

width to thickness ratio � ¼ L=h (h � a) and the ratio of
elastic to inertial forces � ¼ Y=�u2, where � is the mass
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density of the material and u is the crumpling rate (the rate
at which R is decreased). In the simulations we used � up
to 103, which is comparable to, e.g., sheets of paper and
several types of biological membrane [13]. For � we used
� � 109 which is a value big enough for inertial effects to
be negligible and comparable to the rate at which a piece of
paper is crumpled by hand.

We validated our model by comparing the stiffness of a
flat membrane to that of a thin solid plate with the same
parameters modeled by a standard finite element method.
The tensile, shear, and bending stiffnesses were found to be
in good agreement. We also compared the elastic energy of
a simulated crumpled membrane with the expression E �R
dS½12�ðTrCijÞ2 þ 3

16YhðTr�ijÞ2 þ 3
8YhTrð�ijÞ2�, intro-

duced previously for the energy of a deformed membrane
[14,15]. Here � is the bending modulus of the membrane,
andCij and �ij are the curvature and in-plane strain tensor,

respectively, extracted from the lattice. We found again
good agreement (within 30% in total energy) given that
there are large local strains at vertices not accounted for by
the above expression. We also implemented a model for
thin membranes recently used in Refs. [9,16–18] and origi-
nally introduced by Seung [19]. This model is also based
on a triangular lattice but, instead of beams, sites are
connected by springs, and bending stiffness is produced
by having an energy cost to bending of adjacent triangles of
the lattice. While we expect that the beam model performs
better for large local deformations, both models displayed

very similar overall behavior during compression [20].
This is expected, since in sufficiently large sheets the
fraction of the total energy related to large strains is very
small, so the behavior is insensitive to the detailed form of
the elastic potential.
In a crumpled membrane energy is concentrated in the

conical vertices and the ridges between vertices (notice that
local strains of beams in ridges are not necessarily very
high as even a sharp bend is extended over many lattice
spacings). Such structures have been extensively studied in
Refs. [16,17,21–23]. A membrane confined in a small
volume is thus expected to try to minimize the number of
vertices and ridges within the constraints set by connectiv-
ity and self-avoidance. As the radius of the confining shell
begins to decrease, the membrane is first deformed into a
cone with only one sharp vertex. This deterministic defor-
mation is observed also for, e.g., circular sheets confined in
a sphere [9]. For R< 0:4R0 the cone no longer fits the
sphere, and new vertices and ridges are formed when it
disappears.
In the formation of new vertices and ridges we observed

two typical mechanisms: a vertex can bifurcate, and a ridge
appears that connects the two vertices, or a nearly flat area
can buckle and form a diamondlike pattern of ridges and
vertices. The latter kind of structure appears, e.g., in buck-
ling of a cylinder under a compressive lateral force, and has
also been studied in the case of ridges [18]. Buckling and
splitting of vertices appear to be more or less random after
the cone breaks, and deformations become constrained by
self-avoidance. Evidently self-avoidance easily ‘‘traps’’
the membrane in a local energy minimum making further
relaxation difficult. Since we consider fully elastic mem-
branes, existing vertices and ridges may, however, move
without energy cost. This kind of ‘‘global relaxation’’
allows the membrane to compactify more efficiently with
subsequent deformation with fewer vertices and ridges.
This is the mechanism behind the symmetric folds that
can appear under compression.
The possible configurations of crumpled membranes can

roughly be divided into three categories according to the
symmetry of fold pattern. Some membranes display con-
figurations with no symmetric folds, as those in Figs. 2(a)
and 2(b). Such configurations have high elastic energy, and
the density of ridges and vertices is also high.
Configurations also appear with a single symmetry axis
in the middle of the membrane, as in Figs. 2(c) and 2(d).
Such a membrane takes the form of a double layer that
allows for larger facets and lower elastic energy, but there-
after crumpling appears to be random. The third category
consists of membranes with two or more symmetric folds,
which results in multilayer structures (up to 16 layers in
our simulations), as shown in Figs. 1, 2(e), and 2(f). These
membranes have considerably larger facets and thus much
lower energy than randomly crumpled membranes [see
also Figs. 3(e) and 3(f)]. In our simulations (a few dozen

FIG. 1 (color online). A thin membrane folding inside a
spherical shell. (a) Snapshots from simulations showing the
initial configuration, the membrane deformed into a cone, and
the membrane in a symmetrically folded configuration. (b) A
color-coded mean curvature map of a folded configuration for
R ¼ 0:25R0, which displays a symmetrical fold pattern. The
width to thickness ratio of the membrane is 1000:1.
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cases) all three categories appeared with roughly equal
frequencies. Even very small changes in the initial con-
figuration of the membrane typically resulted in a com-
pletely different final configuration. On the other hand, the
membranes that showed very symmetric folding had al-
most identical ridge patterns even though their initial con-
ditions were quite different. For different L=h we found
very similar sets of ridge patterns, which held until the
solid volume fractions of the compressed systems were
more than about a third.

Cross correlations of the ridge patterns in membranes
without symmetric folds (cf. Fig. 2, rab ¼ 0:01) showed no
signs of similarity. In contrast with this, the ridge patterns
in the membranes with symmetric folds were clearly cor-
related (cf. Fig. 2, rab ¼ 0:15). The most efficient way to
decrease the dimensions of a membrane while creating as
little ridge length as possible is to fold it as in Figs. 2(e) and
2(f). Such configurations have low configurational entropy
and low elastic energy.

Next we studied in more detail how the facet size, ridge
length, and elastic energy change during crumpling. If a
membrane is compacted by repeated folding along a cen-
tral line, the characteristic facet size X decreases linearly
with the diameter of the confining shell, i.e., X � R. For
random crumpling the facet size is expected to decrease
faster. To extract the facet size and ridge length we deter-
mined the average linear size of areas with the same sign of
curvature. After the single cone has disappeared (R<
0:4R0), this size is also related to the characteristic linear
size of the facets, which is proportional to the characteristic
ridge length.

Figure 3(c) shows the characteristic facet size as a
function of radius R for a membrane that undergoes folding
before crumpling. A folding regime is visible for 0:4R0 >
R> 0:23R0 with two tight folds resulting in a compact

four-layer structure. Thereafter the twice-folded mem-
brane folds two more times, resulting in a loose 16-layer
structure, as in Fig. 1(a). As a result of folding, the facet
size remain similar to the radius of the confining shell. For
R< 0:23R0 the 16-layer stack is too wide to fit the sphere,
but it is also too thick to fold further, and, consequently, no
symmetric folds appear. There is a transition from sym-
metric folding to crumpling. This transition can be seen in
Fig. 3(c), where the characteristic facet size begins to
decrease more rapidly due to buckling of large facets. A
snapshot of the transition regime is shown in Figs. 3(a) and
3(b).
During compression, fluctuations in the characteristic

facet size are expected due to buckling events and other
rapid changes in the membrane structure. Compared with
the characteristic facet size, the elastic energy of the mem-
brane changes smoothly. In Fig. 3(d) the characte-
ristic facet size of a folding membrane is related to its
elastic energy. The number of ridges in a membrane of
width L can be approximated by ðL=X� 1Þ2, and the

energy of a single ridge as EX=� � �7=3ðX=hÞ1=3
[16,22], where � is the complement to the angle between
the two sides of a ridge. Multiplying these two quantities

and substituting �7=3 ¼ 4:8 (corresponding to a typical
ridge angle, � � 0:6�), an estimate for the total energy
of the system can be found. After the folding regime the
characteristic facet size decreases quickly without a corre-
sponding increase in the elastic energy. This is due to sharp
ridges of high energy in the folds. When a folded stack
buckles, sharp ridge angles open up, and the energy
thereby released is used to form new ridges, cf. Fig. 3(b).
This kind of interplay between the amount of ridges and
their sharpness was found to be a generic feature in the
simulations, and seems to be an important ingredient in
conformation changes.

FIG. 2 (color online). (a),(b) Ridge patterns of configurations with no symmetric folds and very little cross correlation, rab ¼ 0:01,
between the patterns. (c),(d) Ridge patterns of configurations with one clearly symmetric fold. Cross correlation, rcd ¼ 0:05, is now
increased compared to the previous cases (a),(b). (e),(f) Ridge patterns of configurations with two or more symmetric folds and a cross
correlation of ref ¼ 0:15. In all these membranes � ¼ 500, R ¼ 0:13R0, and the solid volume fraction is 0.5. The cross-section cuts on

the right illustrate differences between the structures.
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The rate of increase in energy for sheets undergoing
folding was slightly less than that found in Ref. [9] and
in the experiments of Ref. [1], where the energy scaling of
crumpled membranes was found to be E� R�3 and
equivalent to E� R�3:2, respectively. These rates of en-
ergy increase are, however, close to what we found for
cases of no symmetric folds, which indicates that the
membranes of Refs. [1,9] were only crumpled.

In summary, we have demonstrated that slow crumpling
of elastic sheets without friction displays two qualitatively
different modes of compression. Random crumpling with

high entropy and deformation energy appears roughly as
often as folded structures with low entropy and deforma-
tion energy. Folding does not seem to appear in sheets with
friction and/or plastic deformation. For a sheet to fold,
existing vertices and ridges must be able to move, allowing
the sheet to globally change its shape and minimize its
energy. Simulations display coexistence of folded and
crumpled structures. This type of mode coexistence may
allow, e.g., the observed wide variety of structures in
biological membranes.
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FIG. 3. (a),(b) Cross-section snapshots near transition from
folding to crumpling [their location is indicated in (c)]. In (a)
R ¼ 0:23R0 and the angle of a sharp ridge is 36�. In (b) R ¼
0:22R0 and the same angle is considerably larger (51�). (c) The
characteristic facet size (X=L) as a function of R=R0 for the
membrane in (a),(b). The regimes for conical configuration,
folding, and crumpling are shown, and the facet size X=L is
compared to the radius R=L of the configuration. (d) The related
elastic energy (E) as a function of R=R0. The energy estimated
from the facet size X=L is also shown. In (e) and (f) comparison
is made between the characteristic facet size and energy of the
twice folding membrane of (a)–(d) and a membrane undergoing
only random crumpling.
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