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Photon propagation in a gas of N atoms is studied using an effective Hamiltonian describing photon-

mediated atomic dipolar interactions. The density Pð�Þ of photon escape rates is determined from the

spectrum of the N � N random matrix �ij ¼ sinðxijÞ=xij, where xij is the dimensionless random distance

between any two atoms. Varying disorder and system size, a scaling behavior is observed for the escape

rates. It is explained using microscopic calculations and a stochastic model which emphasizes the role of

cooperative effects in photon localization and provides an interesting relation with statistical properties of

‘‘small world networks.’’
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We address the question of photon localization resulting
from both disorder and cooperative effects (multiatomic
coherent emission) in three-dimensional cold atomic gases.
This localization shows up as an overall decrease of photon
escape rates, and our purpose is to investigate the roles
played by disorder and by cooperative effects. For weak
disorder, incoherent spontaneous emission by independent
atoms is expected. For stronger disorder, cooperative ef-
fects become important and lead to vanishing escape rates,
i.e., to photons trapped in the gas for very long times. We
show that localization occurs as a smooth crossover be-
tween these two limits and not as a phase transition like for
Anderson localization [1]. We propose a stochastic de-
scription of the photon emission process, which agrees
quantitatively with our numerical results and explains the
nature of the crossover. This leads to the conclusion that
photon localization in atomic gases is primarily deter-
mined by cooperative effects and not by disorder.

We consider a collection of N identical atoms at rest,
taken to be degenerate two-level systems denoted, respec-
tively, for the atom i, by jgii ¼ jjg ¼ 0; mg ¼ 0i and

jeii ¼ jje ¼ 1; me ¼ 0;�1i for the ground and excited
states. j is the total angular momentum, and m is its
projection on a quantization axis. The energy separation
between the two levels, including the radiative shift, is
@!0, and the natural width of the excited level is @�0.
Atoms randomly placed at positions ri are coupled to the
electromagnetic field E through their dipole operator di.
The corresponding Hamiltonian is

H ¼ XN
i¼1

@!0jeiiheij � di �EðriÞ þ
X
k"

@!ka
y
k"ak"; (1)

where ayk" is the creation operator of a photon of wave

vector k, !k ¼ cjkj, and polarization ". We assume that
only one photon is present. For resonant scattering, tracing
over the photon degrees of freedom leads to the effective

atomic Hamiltonian:

He ¼
�
@!0 � i

@�0

2

�
Sz þ @�0

2

X
i�j

VijS
þ
i S

�
j ; (2)

where Sþi ¼ jeiihgij is the atomic raising operator, S�i ¼
ðSþi Þy, and Sz ¼ PN

i¼1 Szi, with Szi ¼ jeiiheij. The poten-

tial Vij ¼ �ij � i�ij is a random and complex-valued

quantity, specified by

�ij ¼ 3

2

�
�p

cosk0rij
k0rij

þ q

�
cosk0rij

ðk0rijÞ3
þ sink0rij

ðk0rijÞ2
��

;

�ij ¼ 3

2

�
p
sink0rij
k0rij

� q

�
sink0rij

ðk0rijÞ3
� cosk0rij

ðk0rijÞ2
��

;

(3)

where k0 ¼ !0=c and rij ¼ jri � rjj is the distance be-

tween any two atoms. The quantities p and q depend on the
atomic transition. For �m ¼ me �mg ¼ 0, p0 ¼ sin2�ij
and q0 ¼ 1� 3cos2�ij, and, for �m ¼ �1, p� ¼ 1

2 ð1þ
cos2�ijÞ and q� ¼ 1

2 ð3cos2�ij � 1Þ, where �ij ¼ cos�1ðẑ �
r̂ijÞ and r̂ij is a unit vector defined along the direction

joining the two atoms. Expressions (2) and (3) are well
known [2] and correspond to an instantaneous photon
exchange between an initially excited atom i coupled to
the jth atom. This description holds for distances between
atoms that are small compared to the coherence length of
the light emitted by a single atom [3].
The possible escape rates � of a photon propagating in

an atomic gas are obtained from the time evolution of the
ground state population hGj�jGi:

d

dt
hGj�jGi ¼ �0

X
ij

�ijhGjS�j �Sþi jGi; (4)

where jGi � jg1; g2; . . . ; gNi and �ðtÞ is the reduced
atomic density operator [4]. The real and symmetric matrix
�ij can be diagonalized by an orthogonal transformation.

The eigenvalue equation
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XN
j¼1

�iju
ðkÞ
j ¼ �ku

ðkÞ
i ; (5)

together with the collective operators S�k � P
N
i¼1 u

ðkÞ
i S�i ,

enables us to rewrite (4) as hGj _�jGi ¼
�0

P
N
k¼1 �khGjS�k �Sþk jGi. This last form allows us to in-

terpret the eigenvalues f�kg as the escape rates and the

eigenfunctions fuðkÞi g as photon modes providing the direc-
tivity of the angular emission [4]. It results from (4) that the
�k’s are independent of the effective dipole-dipole inter-
action �ij so that van der Waals dephasing does not play a

role [5].
The average density of escape rates Pð�Þ, normalized to

unity, is defined by Pð�Þ ¼ �ð1=�ÞImRðz ¼ �þ i0þÞ,
with RðzÞ ¼ ð1=NÞTrðz� ½�ij�Þ�1. The average � � � is

taken, at fixed density, over spatial configurations of the
atoms. For Gaussian ensembles of random matrices [6],
Pð�Þ obeys a semicircle law. Here, as we shall see, the
behavior is very different.

The random matrix �ij depends on the distances rij
between atoms and on the angles �ij. We expect localiza-

tion properties to depend on rij rather than on �ij. We

therefore consider the scalar model [7] obtained from (3)
by averaging �ij over �ij and thus given by the N � N

random matrix [8]

�ij � h�iji ¼
sinxij
xij

; (6)

where xij ¼ k0rij are interatomic distances expressed in

units of the wavelength � ¼ 2�=k0. We have checked that
the vectorial and scalar behaviors of Pð�Þ are qualitatively
the same [9]. This point is important, since one may think
that the scalar case (6) is the far-field limit obtained by
dropping in (3) the near-field terms responsible for coop-
erative effects. This is not the case, and �ij is well defined

for xij ¼ 0 so that Tr½�ij� ¼ N. The eigenvalues of �ij are

nonnegative since the 3D Fourier transform of sincjxj is
�ðjkj � 1Þ � 0.

We now consider N atoms enclosed in a cubic volume
L3, with a uniform density n. The disorder strength is
defined by the dimensionless parameterW ¼ 1=k0l, where
l ¼ 1=n� is the elastic mean free path and � ’ �2 is the
resonant scattering cross section [10]. Introducing the
number N? � ðk0LÞ2=4 of transverse photon modes leads
to W ¼ �

2
�
L

N
N?

.

Characteristic behaviors of Pð�Þ for different values of
W and size a ¼ L=� are displayed in Fig. 1. For a dilute
gas (W � 1), we recover the single atom limit �ij ! �ij;

namely, Pð�Þ is narrowly peaked around � ¼ 1 (in units of
�0) as expected from resonant scattering of a photon by a
single atom [Fig. 1(a)]. For stronger disorder, Pð�Þ be-
comes broader and shifted towards lower values of �
[Fig. 1(b)]. Eventually, for large enough disorder, most of
the eigenvalues get close to � ¼ 0 [Fig. 1(c)]. Such a
vanishing escape rate corresponds to photons localized in

the atomic gas. By increasing furtherW, at a fixed number
N of atoms, yet another behavior shows up for xij � 1

[Fig. 1(d)] where Pð�Þ, obtained from the escape matrix
with all entries equal to one (�ij ¼ 1), has two eigenvalues.

One at � ¼ 0 is the (N � 1)-degenerate subradiant mode,
and the second � ¼ N is the nondegenerate superradiant
mode. This is the Dicke limit [11] reached when atoms are
enclosed in a volume much smaller than �3. Using the
definition of the average density of escape rates, we obtain
that

Pð�Þ ¼ N � 1

N
�ð�Þ þ 1

N
�ð�� NÞ: (7)

A quantitative characterization of the behavior of Pð�Þ is
obtained by considering the relative number of statesR1
1 d�Pð�Þ having an escape rate larger than 1. We then

introduce the conveniently normalized function Cða;WÞ
defined between 0 and 1 by

Cða;WÞ ¼ 1� 2
Z 1

1
d�Pð�Þ: (8)

Cða;WÞ thus defined measures the relative number of
states having a vanishing escape rate. At finite size, we
expect Cða;WÞ to have a scaling form [12], namely,

d lnCða;WÞ
d lna

¼ �ðCÞ; (9)

whose solution Cða;WÞ is a function of a=	ðWÞ alone. We
have verified this scaling behavior over a broad range of
size and disorder. For a � 1, the results displayed in Fig. 2
collapse on a single curve (Fig. 3) when plotted as a
function of the parameter 2�aW ¼ �2N=N?. The Dicke
limit [Fig. 1(d)] is reached for small volumes L � � and
N? ’ 1, so that the scaling parameter becomes N=N? ’
N. Using (7) and (8) leads to Cða;WÞ ¼ 1� ð2=NÞ dis-
played in Fig. 4.
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FIG. 1 (color online). Behavior of Pð�Þ for different values of
disorder W and size a ¼ L=�, with N ¼ 216. (a) Low disorder,
(b),(c) larger disorder, and (d) Dicke limit.
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To explain this scaling behavior, we study first the limit
N 	 N? which can be understood from simple consider-
ations on the superradiant rate. The electric field E created
by N excited atoms within the volume L3 is obtained from
the electromagnetic energy N@!0 ¼ L2ðc=�ÞE2=8�. The
superradiant escape rate �may also be obtained by assum-
ing that, under the action of the field E, each atom performs
half a Rabi oscillation over a time 1=� ¼ @=Ed. The
dipolar matrix element d is related to the spontaneous

emission rate �0 ¼ 4
3

k3
0
d2

@
. Altogether, � is specified by

the parameter N
N?

as �
�0

¼ 3�
2

N
N?

. This expression, which

is correct when the electric field E is delocalized over the
atoms, i.e., for N=N? 	 1, emphasizes that the initial
linear behavior of CðN=N?Þ (Fig. 3) is essentially deter-

mined by cooperative effects. In the opposite limit N 

N?, the nth order cumulant of Pð�Þ, is ð1=NÞTr�n

ij ¼
3ðN=N?Þn�1=ðnþ 2Þ, and a resummation leads to the
asymptotic behavior [9]

Pð�Þ ¼
�
1� 3N?

2N

�
�ð�Þ þ 3�

�
N?
N

�
3

(10)

for � 	 N=N? and Pð�Þ ¼ 0 otherwise, so that asymptoti-
cally, CðN=N?Þ ¼ 1� 3ðN?=NÞ (Fig. 3).
To interpolate between the two previous limits, we con-

sider a mapping of the cooperative emission of randomly
distributed atoms onto a stochastic Markov process PNð0Þ
on a one-dimensional lattice with N sites. To define it, we
start from the Dicke limit [11] whose escape rate matrix
�ij ¼ 1 is the adjacency matrix of a complete graph having

spectral density (7). In that limit, the Hamiltonian (2)
commutes with the collective spin operators S� �P

N
i¼1 S

�
i , so that Dicke states jS;mi, eigenstates of S2 �

1
2 ðSþS� þ S�SþÞ þ 1

4 S
2
z and Sz, are eigenstates of He.

Emission or absorption of a photon, a process which keeps
S unchanged and shifts m by one unit, can then be de-
scribed as a one-dimensional and symmetric Markov pro-
cess with equiprobable jumps PNð0Þi;i�1 ¼ 1=2 between

neighboring m states. Away from the Dicke limit, the
expressions of the collective spin operators for scalar

waves are obtained by taking uðkÞi ¼ e�ik�ri in (5), so that
S�k ¼ P

N
i¼1 S

�
i e

�ik�ri . The random phases prevent us from
having the previous angular momentum algebra so that He

does not commute with S2k. Yet, we can still use the Dicke
states basis, but now a photon emission is a process where
both S and m change. This can be described as a modified
Markov process where S-changing events are accounted by
adding random jumps to non-neighboring m states with a
probability 
. The modified Markov process PNð
Þ is
defined by the N � N matrix

PNð
Þ ¼ ð1� N
ÞPNð0Þ þ 
jeNiheNj: (11)
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FIG. 2 (color online). Behavior of C as a function of the size
a ¼ L=� � 1, for different disorder strengths W.
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FIG. 3 (color online). All points represented in Fig. 2 collapse
on a single curve as expected from (9). The solid line is a fit of
(12), and the dashed line is the asymptotic behavior obtained
from (10).
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FIG. 4 (color online). Behavior of CðNÞ in the Dicke limit.
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The escape rate of a photon is set by the inverse mean
hitting time T Nð
Þ defined as the average over all sites of
the number of steps needed to reach a given assigned site.
The scaling function (8) can be written as Cð
; NÞ ¼

NT 2

Nð
Þ=T Nð0Þ, and, for large N, C depends on s �
ð�= tanh�Þ � 1 alone, namely,

CðsÞ ¼ s2

�2ðsÞ ; (12)

where � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N3=2

p
[9]. The parameter s is the number of

shortcuts between non-neighboring m states induced by
emission processes which do not leave S unchanged. A plot
of (12) is shown in Fig. 3 and compared to the numerical
data.

Previous expressions indicate that photon escape rates
are primarily determined by cooperative effects and not by
disorder. Moreover, (12) displays a smooth crossover be-
tween delocalized and localized photons and not a
disorder-driven localization transition. To emphasize this
point, we compare the two parametersN=N?, which speci-
fies the strength of cooperative effects, and the dimension-
less conductance g � N2

?=N for the strength of disorder

[10]. These are plotted in Fig. 5 for a fixed but large N. For

N? � N2=3, g is large so that disorder effects are small. In
the opposite limit, we have N=N? 
 g so that cooperative
effects prevail disorder in a regime (g � 1) where disorder
may precisely be strong enough to lead to disorder-driven
localization.

In summary, we have shown that escape rates of photons
propagating in a 3D atomic gas are characterized by a
scaling behavior determined by the parameter N=N?. For
N=N? � 1, cooperative effects are negligible, and pho-
tons are emitted in spontaneous and incoherent processes.
For larger values of this parameter, cooperative effects set
in and the overall photon escape rate becomes very small.
Eventually, for fixed N, we reach the Dicke limit. The
crossover between these behaviors is smooth, and a

disorder-induced localization phase transition is unlikely
to take place.
These results are well described by the modified Markov

process (11). Surprisingly enough, this process also pro-
vides an accurate description and an interesting link [13] to
the recently widely studied ‘‘small world networks’’ [14],
tuned to be intermediate between regular networks with
long ( / N) chemical lengths and random networks with
short ( / lnN) ones. The existence of a crossover rather
than a phase transition between regular and random net-
works has been thoroughly investigated [15]. Noting that
small world networks appear to be well suited to achieve
synchronization of nonlinear oscillators [16] and that pho-
ton cooperative emission results from the synchronization
of the atomic dipoles induced by long range atomic corre-
lations, this connection becomes even more interesting and
relevant. Finally, the analysis we present in this Letter may
suggest a different approach and new protocols for experi-
ments on photon localization in cold atomic gases or for
atoms arranged on an optical lattice. In the latter case,
photon localization expected from photonic crystal struc-
ture should be compared to cooperative effects.
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