PRL 101, 102001 (2008)

PHYSICAL REVIEW LETTERS

week ending
5 SEPTEMBER 2008

Large-N, Confinement and Turbulence

Jean-Paul Blaizot"* and Maciej A. Nowak>*

YECT* Strada delle Tabarelle 286, 1-38050 Villazzano (Trento), Italy
M. Smoluchowski Institute of Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University,
PL-30-059 Cracow, Poland
and GSI, Planckstrasse 1, 64291 Darmstadt, Germany
(Received 4 April 2008; published 3 September 2008)

We suggest that the transition that occurs at large N, in the eigenvalue distribution of a Wilson loop may
have a turbulent origin. We arrived at this conclusion by studying the complex-valued inviscid Burgers-
Hopf equation that corresponds to the Makeenko-Migdal loop equation, and we demonstrate the appear-
ance of a shock in the spectral flow of the Wilson loop eigenvalues. This picture supplements that of the
Durhuus-Olesen transition with a particular realization of disorder. The critical behavior at the formation
of the shock allows us to infer exponents that have been measured recently in lattice simulations by
Narayanan and Neuberger in d = 2 and d = 3. Our analysis leads us to speculate that the universal
behavior observed in these lattice simulations might be a generic feature of confinement, also in d = 4

Yang-Mills theory.
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Many efforts continue to be devoted to the study of QCD
in the limit of a large number of colors, after the initial
suggestion by ’t Hooft [1]. This, in part, is due to the
general belief that the large N, limit captures the essence
of confinement, one of the most elusive of QCD properties.
At the same time the theory simplifies considerably in the
large N, limit: fluctuations die out and the measure of the
partition function becomes localized at one particular con-
figuration, making the large N, limit akin to a classical
approximation [2].

This Letter will discuss the large N, limit of Yang-Mills
theory in 2 dimensions, but we have good reasons to
believe that much of our analysis can be extended to higher
dimensions. There are many equivalent approaches to
multicolor Yang-Mills theory in d = 2. For definiteness,
we shall refer to the known [3] formulation in terms of free
random variables [4,5]. This translates d = 2 Yang-Mills
theory onto the large N, matrix model, where the size of
the unitary matrix is identified with the number of colors.
More specifically, the basic observable that we shall con-
sider is the Wilson loop along a (simple) curve C

W(A) = <P exp(i fc Ade#>>, (1)

where the averaging is over the Yang-Mills measure, and
we have made explicit that W depends in fact only on the
area A enclosed by C, to within a normalization [6]. The
matrix W is unitary, with eigenvalues of the form A =
exp(i0) that are distributed, in the limit N, — oo, according
to an average density p(6, A).

Recently, Narayanan and Neuberger [7] studied the
behavior of W(A) as a function of A in the large N, limit.
They observed that for small loops (which probe short
distance, perturbative physics), the spectrum does not
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cover the whole unit circle, but exhibits a gap; in contrast,
for very large loops (which probe long distance, nonper-
turbative physics) the spectrum covers uniformly the unit
circle (gapless phase). Since the crossover region is becom-
ing infinitely thin [7] in the limit N, — oo, one is tempted
to try and explain the transition using classical concepts
only, which is precisely what we aim at in this Letter. In
fact this behavior of the spectrum agrees with the order
(gapped)-disorder(gapless) transition, proposed long ago
in the context of large N, two-dimensional Yang-Mills
theory by Durhuus and Olesen [6] and based on the explicit
solutions of corresponding Makeenko-Migdal equations
[8]. Surprisingly, a similar critical behavior has been ob-
served also in d = 3 dimensions and conjectured to hold in
d = 4 large N, Yang-Mills theory [7]. In this Letter we
suggest the general mechanism for such a transition by
tracing the complex singularities of the eigenvalue flow
equation and demonstrating the appearance of ‘“‘spectral
shocks™ that may signal the transition to a turbulent state.

The spectral density is not available in analytic form, but
the moments

wald) = @wiay) = [Tasemp0.0) @)

are. An explicit, compact form for these moments is given
in Ref. [3] in terms of an integral representation

W) = 1§11/ exp(— nAz +1/2)

= lL(ln_l)(nA) exp(—nA/2), 3)
n

where the representation of Laguerre polynomials, used in

the second line, allows connection to results known already
25 years ago [6,9]. The Durhuus-Olesen transition can be
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seen by studying the asymptotic behavior of these Laguerre
polynomials, using a saddle point analysis of their integral
representation [10,11]. The result is surprising: for a loop
area below the critical value A, = 4, the moments oscillate
and decay like n =3/, while for A > A, the moments decay
exponentially with n, modulo similar power behavior. Both
regimes are separated by double scaling limit. There exists
vast literature on this subject [9]. Here we would only like
to stress that the transition is subtle, and popular arguments
that two-dimensional confinement is trivial, and perturba-
tive (linear potential), can easily lead to paradoxes when,
e.g., instanton effects are not taken into account [9].

In order to analyze the nature of the transition, we
consider the following function [3]:

F(6,A) = (e G(e™, A) — b), )
where G(z) is the resolvent

Gz A) = f;‘*ﬂ' o pla, A)

Z_eioz'

&)

The function F(6, A) is analytic in the complex 6 plane,
with a discontinuity across the real axis proportional to the
spectral density, p(6, A) = (1/7) ImF(6 — i0*, A). A sim-
ple calculation yields the explicit expressions [6]

1 & .
F(0,A) = i(z + Zl w,,(A)e*m">

— % fj: dap(a, A) cot(e ; a)’ (6)

whose imaginary part gives the spectral density in the form
1 +o00
p(6,A) = oy (1 + ; 2w, (A) cos(no)), (7)

in agreement with Eq. (2) above (we have used the fact that
the moments are real and that p(—6) = p(6)).

It can be shown that the function F obeys the following
equation [3,6,9]

This is the so-called complex Burgers equation in the
inviscid limit. This equation is analogous to the real
Burgers equation of fluid dynamics (with A playing the
role of time, @ that of a coordinate, and F of a velocity
field). The complex Hopf-Burgers equation is omnipresent
in free random variables calculus [4]. This, and similar
integro-differential equations also appear frequently as
one-dimensional models for quasigeostrophic equations,
describing, e.g., the dynamics of the mixture of cold and
hot air and the fronts between them. Another reason why
the complex Burgers equation is much studied is the fact
that the structure of quasigeostrophic equations resembles
3D Euler equations, if one substitutes the velocity by the
vorticity [12]. Here, we shall take advantage of the abun-
dant mathematical studies of the complex Burgers equation

to suggest a connection between signals of turbulence
(commonly associated with the blowup of the solution in
finite time) and the problem of spectral flow of the eigen-
values of Wilson loop operators. We shall, in particular,
adapt the proof of the blowup from Ref. [13], using the
method of complex characteristics, and tracing singular-
ities in the complex plane. The observation of shock for-
mation in the complex Burgers and similar equations was
confirmed by other methods; see, e.g., [14].

In the present case, the method of characteristics pro-
vides the following implicit solution in terms of an auxil-
iary function &(A, 6):

F(A, 0) = Fo(£(A, 0)), 0=¢+AF(E), )

where F|, is given by the initial condition
Fo(0) = F(A=0,0). (10)

This implicit solution is well defined as long as the map-
ping between # and ¢ remains regular. However, singular
points occur when df/d¢& = 0, that is, for £, solution of

1+ AF)(£,) = 0. (11)

A lot of information on the solution, and, in particular, the
occurrence of a blowup, can be inferred from the study of
the location of these singular points.

We begin our analysis with the ordered (gapped) state,
and recover known results (see, e.g., the second Ref. [10])
in an easy and direct way. We start from an initial condition
peaked at eigenvalue A =1, i.e., p(6,0) = 5(0) [corre-
sponding to A = 0 in Eq. (3)]. Then, from (6), Fy(0) =
1/2cotf/2, and from (11) sin?£,/2 = A/4. In the vicinity
of the singularity the characteristics behave as

0=0,+(&—EPVI/A-1/4, (12)

where 0, = &. + JA(l — A/4) and &, = 2 arcsin(~/A/2).
The spectral density is easily deduced from the imaginary
part of F or equivalently Fy [see (10)]. A simple analysis
then reveals that p(#, A) = 0 when 6 > 6., while for § <
0., p(6,A) ~ /0. — 0. In other words, 0, determines the
edge of the spectrum which, as long as A < 4, presents a
gap.

At the closure of the gap, i.e., for A = A. =4, the
second derivative in the expansion (12) vanishes, and we
have instead

! 3
34, (£ — &) (13)
with the spectral density p(8, A,) ~ (7 — 6)* for 6 < .
From this point on, as A keeps increasing, Re£,. remains
equal to 77, but the initial singularity splits into two com-
plex conjugate ones that move away to *ico, leading
eventually to a uniform spectral density at large A. This
behavior is reminiscent of the turbulent inverse spectral
cascade (alike in two-dimensional turbulence [15]) which,
as A grows, suppresses higher Fourier modes, leaving in

0=m—
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the A = oo limit only the longest wavelength mode corre-
sponding here to the constant density p(6) = 1/2.

To demonstrate the inverse spectral cascade, we con-
sider, following [13], a small perturbation of the form

p(6,Ay) = L(1 + 2ecosh) + O(e?), (14)
2T

where Ao >> 1. This is of the form (7) with w; = €, and all
other moments vanishing exponentially. It follows from (6)
that Fo(§) = £[1 + 2eexp(—ié)], 0=¢+(A—
Ag)Fo(€), and a singularity occurs when exp(ié.) =
—€(A — Ap). In the vicinity of the singularity

0= 00+ 5~ &P (15)

where 6, = £, + (A — Ag)Fy(£,). We have two solutions
depending on whether A > A, or A < A. In the first case

A— A

0. =m— i(l - + Ine(A — AU)), (16)

whereas in the second case

Ay — A
0. = —i(1+
e G

+ Ine(Ay — A)). 17)

In the first case, the singularity is initially (when A = A)
at @, = 7 + ioo, and for small € (e < 1/2), it remains
complex, and returns to +io0 as A — oo: asymptotically
the effect of the perturbation vanishes, and only the con-
stant mode survives. However in the second case, the initial
singularity at +ico moves towards the real axis as A
decreases, and reaches it in a finite time A* given by

0—1+20-4

+ Ine(Ay — AY). (18)

At this point we have a blowup [13] of the type already
encountered earlier at the closure of the gap. In fact, this
phenomenon is quite generically associated to the motion
(as A decreases) of complex conjugate singularities (square
root branch points) towards the real axis, that eventually
merge on the real axis (into a third order branch point).

This generic phenomenon has an exact analog in optics
[16], where light rays play the role of the characteristics.
The singularities lines are there the caustics, and the merg-
ing of singularities discussed above corresponds to the
merging of “‘twofold” caustics into a “‘cusp” (in the
terminology of catastrophe theory). The essence of the
cusp singularity is captured by Pearcey’s function

P& ) = [j" drexp(i(f/4 + £2/2 + np), (19

whereas the square-root-type singularity is described by
the well-known Airy function. This analogy can be used in

order to explain the origin of the universal function for
Yang-Lee zeroes for d = 2 dimensional Yang-Mills theory
obtained in Ref. [7]. The explicit comparison will be
presented elsewhere [17].

The location of the singularities in the complex plane
also determines the asymptotic behavior of the moments,
according to general arguments [18]. For complex 6., one
may write 8, = 0* + iA(A), with #* real; the singularity is
of the form (6 — 6,.)*, where u is not an integer (branch
point singularity). It follows that the large n Fourier co-
efficients, i.e., the moments w,,, behave as

w, = |n|~(r+DendA) Reeint”, (20)

Thus, the position of the singularity determines the width
of an analytical strip, controlled by the value of A(A). In
the gapped phase, the singularity is of the square root type,
but always on the real axis. Then, since A = 0, the mo-
ments only oscillate, accompanied by power law n~%/2. In
the gapless phase, the same power law is accompanied by
exponential damping, since in this case the singularity is
complex [with a nonvanishing A(A)]. At the critical point,
a generic cubic singularity [see Eq. (13) and [19,20]]
appears in a narrow interval where 1 < n < 1/A(A)
(just approaching the singularity from above) and the
scaling goes like

w, ~ |n|74/3. (21)

This generic picture agrees with detailed calculations
using the analytic form of the moments given above, based
on asymptotics of Laguerre polynomials [7,10,11]. We
would like to stress, however, that the method of tracing
complex singularities is general and therefore we expect it
to hold also in higher dimensions. The “‘speed” with which
the singularities move may depend on the dimensionality,
and possibly on other features of the loops, but for large
loops it is natural to expect that the dominant control
parameter will remain the area of the loop. We may there-
fore speculate that, also in higher dimensions, the disor-
dered phase may be caused by an inverse spectral cascade.

One may also argue that the universal nature of the
critical behavior, conjectured and observed in Ref. [7],
may find its origin in the fact that since the critical behavior
happens in a very narrow analyticity strip, one can expect
universal (ergodic) behavior, alike in several models of
disorder in mesoscopic physics. If this is the case, one
may expect that simple schematic models (e.g., matrix
models) may define this class of universality. This seems
to be indeed the case. A particular illustration is provided
by the matrix model proposed by Janik and Wieczorek
[20], hereafter the JW model. The model stems from the
general construction of multiplicative free evolution [21],
where increments are mutually free in the sense of
Voiculescu. The unitary realization in the JW model cor-
responds to matrix value unitary random walk, where the
evolution operator is the ordered string of consecutive
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multiplications of infinitely large unitary matrices
K
W = <l_[ U i>’
i

where U; = expi\/t/_KHi, with H; a Hermitian random
matrix. The model is a random matrix generalization of
the multiplicative random walk performed in K steps dur-
ing “time” f. In the continuum limit K — oo, the model is
exactly solvable. The solution coincides exactly with the
two-dimensional QCD, provided one identifies ¢ with the
area of the Wilson loop, modulo a normalization [22].

Recently, Neuberger and Narayanan [7] have observed
that large N, Yang-Mills lattice simulations in d = 2 and
d = 3 demonstrate the same critical scaling at the closure
of the gap as in the JW model and have conjectured that
this model establishes a universality class for d = 4 large
N, Yang-Mills theory as well. That the whole dynamics of
complicated nonperturbative QCD can be reduced in some
spectral regime to matrix model is not new—a notable case
is the universal scaling of spectral density of Euclidean
Dirac operator for sufficiently small eigenvalues, where the
spectrum belongs to a broad universality class of corre-
sponding chiral models [23]. In fact the present analysis
leads us to expect that in the very narrow spectral window
around A = —1 auniversal oscillatory regime precedes the
formation of the spectral shock, in qualitative analogy to
similar spectral oscillations of the quark condensate before
the spontaneous breakdown of chiral symmetry, based on
the Banks-Casher relation [24].

In this Letter, we have proposed to view confinement-
deconfinement transition in multicolor Yang-Mills theory
as an order-disorder phenomenon, where the transition to
disorder is caused by (inverse) turbulence in the spectral
flow of Wilson loop operators. This picture corroborates
the picture of order-disorder transition that Durhuus and
Olesen envisioned many years ago, and supplements it
with a detailed model for building the disorder, based on
the development of the inverse spectral cascade. It will be
interesting to incorporate into this picture the effects of
finite N, and matter fields. We expect that finite N, effects
will contribute to the appearance of an effective spectral
viscosity v, which will smoothen the shocks, but will not
destroy them [17].

M. A.N. is grateful to GSI Darmstadt for hospitality
during his sabbatical. This work was supported by Marie
Curie TOK Grant MTKD-CT-2004-517186 “Correlations
in Complex Systems” (COCOS).
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