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We study numerically and analytically the dynamics of a sedimenting suspension of active, reproducing

particles, such as growing bacteria in a gravitational field. In steady state we find a nonequilibrium phase

transition between a ‘‘sedimentation’’ regime, analogous to the sedimentation equilibrium of passive

colloids, and a ‘‘uniform’’ regime, in which the particle density is constant in all but the top and bottom of

the sample. We discuss the importance of fluctuations in particle density in locating the phase-transition

point, and report the kinetics of sedimentation at early times.
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About a century ago, Einstein showed theoretically and
Perrin demonstrated experimentally that in a dilute colloi-
dal suspension, the particle density � as a function of
height z is given by the barometric distribution: �ðzÞ ¼
�ð0Þ expð�z=z0Þ, where z0 is the sedimentation height.
This distribution results from a subtle interplay between
thermal diffusion, hydrodynamics, and gravity. Diffusion
and hydrodynamics are related via the Stokes-Einstein
formula, a form of the fluctuation-dissipation theorem
for equilibrium systems, while balancing gravity and
Brownian motion gives z0 ¼ D=vs, where D is the parti-
cles’ diffusion coefficient and vs their sedimentation
speed. The barometric distribution applies when the sus-
pension is so dilute that interparticle potential interactions
(excluded volume, Coulomb, etc.) can be neglected.
Modern colloid physics has focused on the behavior of
concentrated suspensions [1].

An equally interesting avenue to explore is that of active
particles (APs) [2]. Specifically, we consider APs able to
propel themselves in such a way that their long-time mo-
tion is diffusive, i.e., each particle’s mean-squared dis-
placement from an initial position hr2ðtÞi increases
linearly with time t so that (in three dimensions) hr2i ¼
6Defft, where Deff is an effective diffusion coefficient. The
swim-tumble-swim motion of an Escherichia coli bacte-
rium (�2 �m� 1 �m spherocylinder, average density
�b ¼ 1:08 g=cm3) is an example [3], for which experi-
ments giveDeff �Oð102 �m2 s�1Þ [4]. An equivalent pas-
sive colloid has D� 0:5 �m2 s�1 at 300 K, so that an
Escherichia coli functions at an effective temperature of
Oð104 KÞ: it is far from equilibrium. Mimicking bacteria,
we assume our APs can also ‘‘reproduce’’ and ‘‘die.’’ Both
motility and reproduction require energy intake, although
this is nowhere explicit in what follows.

In this Letter, we study the behavior of (effectively)
diffusing and reproducing, noninteracting APs in a gravi-
tational field. This may model, for instance, a dilute sus-
pension of motile E. coli that are growing but not
responding to chemical gradients (i.e., nonchemotactic).
Such a system is, arguably, the simplest example of ‘‘active
soft matter.’’ Does this paradigmatic AP system differ

significantly from its passive counterpart (dilute colloidal
sedimentation equilibrium), and if so how?
We first report stochastic simulations of the dynamics of

diffusing and reproducing APs in a gravitational field. We
then interpret these results by analyzing a continuum equa-
tion describing the evolution of a density profile of a dilute
sedimenting AP fluid. We find the steady-state profile, as
well as the dynamic pathway leading to it. Even a mean-
field description reveals a much richer phenomenology for
APs than passive colloids. We find a nonequilibrium phase
transition between a ‘‘sedimentation’’ regime with expo-
nential profile, and another regime showing essentially
constant density in the bulk of the suspension. Using
realistic parameter values, we predict that one may switch
between the two phases by modifying the growth rate of a
real system of bacteria. Close to this transition, there exist
novel ‘‘sedimentation bands’’ in which a region of uniform
AP density coexists with an AP-depleted region. This may
usefully be compared to the phenomenon of shear banding.
We also show that the presence of noise shifts the transition
point. Finally, we relate our results to real bacterial
suspensions.
We use a stochastic algorithm to simulate the coupled

biased diffusion and reproduction or death of APs. We
consider a column of sedimenting APs as a discrete lattice
of sites i ¼ 1; . . . ; L with the number of AP occupying
each lattice site specified as niðtÞ. Gravity acts towards i ¼
0. At each time step t ! tþ�t the array of occupation
numbers is updated according to a ‘‘multiply’’ step or a
‘‘move’’ step chosen with probabilities w=ð1þ wÞ or
1=ð1þ wÞ, respectively, where w ¼ �f1þP

L
i¼1 n

2
i =

½�0

P
iniðtÞ�g is the ratio of the total rate of reproduction

or death per particle to the total rate of moving per particle,
and �, �0 are parameters to be discussed below [5].
In a ‘‘move’’ update each AP moves independently up or

down with probability p or 1� p. In a ‘‘multiply’’ update,
at each site i each particle is replaced by two particles with
probability �0=½�0 þ niðtÞ� or removed with probability
niðtÞ=½�0 þ niðtÞ�. We impose no flux, or reflecting, bound-
ary conditions at the top and the bottom of the container
(i ¼ 0 and i ¼ L).
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If �z, �t represent, respectively, the spatial and tempo-
ral steps, then the continuum limit of our Markov process

leads to a diffusion constant D ¼ �z2

2�t and sedimentation

velocity v ¼ ð1� 2pÞ �z�t . The parameter p controls the

strength of the gravitational force, � controls the rate of
reproduction or death, and �0 gives the value of the occu-
pation in which reproduction and death are balanced. In a
real bacterial suspension, � will be the growth rate (me-
dium dependent, but * hour�1 for E. coli) and �0 is the
saturation cell density (� 109 cells=cm3 for E. coli [6]).

Note that the state where the lattice is devoid of APs is
an absorbing state of the dynamics in the algorithm, which
we call model I. We also considered a variation, model II,
in which a depopulated site is allowed to be repopulated
spontaneously (during the ‘‘multiply’’ update).

Our simulations suggest that there is a phase transition
between two different regimes. If the APs reproduce
slowly (� small), we obtain a steady-state density profile
which decays sharply with z [Fig. 1(a)]. We call this the
‘‘sedimentation regime’’ in analogy with the similar be-
havior of passive colloids under gravity. If the growth rate
exceeds a threshold �c, the steady state is one with a
uniform density throughout the bulk of the sample, with
depleted and enriched layers in the top and the bottom of
the container [Fig. 1(b)]. In model II, we find that the

critical value is close to �c ¼ v2

4D ; whereas in model I,

the presence of an absorbing state widens the sedimenta-
tion regime, shifting �c to slightly larger values.

To understand the simulations, we take a continuum
approach and coarse grain our discrete model by defining
a 1-dimensional profile of AP density �ðz; tÞ (gravity acts
along the negative z axis). To make contact with the
numerical simulations, and on general grounds, we may

assume that the density profile obeys the following dy-
namic equation of motion:

@�

@t
¼ D

@2�

@z2
þ v

@�

@z
þ ��

�
1� �

�0

�
þ �ð�Þ�ðtÞ: (1)

The first term represents diffusion, the second term repre-
sents the sedimentation due to gravity and the third term
represents reproduction or death. Here, D and v have the
same meaning as in the numerical simulations. An impor-

tant dimensionless control parameter is � ¼ v=
ffiffiffiffiffiffiffiffi
D�

p
. The

last term in (1) represents noise, and �ðtÞ is a white noise
with unit variance, while �ð�Þ is a function to be specified.
We first consider the deterministic case �ð�Þ ¼ 0 which
reduces to a mean field description. We also take �0 ¼ 1.
Considering the steady state (t ! 1), if � ¼ 0, we get

back passive colloid sedimentation equilibrium �ðzÞ /
expð�vz=DÞ. However, for �> 0 one obtains a nonlinear
equation for which an exact solution is not available.
Therefore we perform a perturbation expansion for small

� using the first 30 terms of a series expansion �ðzÞ ¼P
n�

n�ðnÞðzÞ. The series converges for �< �c ¼ v2

4D and

diverges otherwise. This corroborates the simulation re-
sults and suggests that indeed a phase transition occurs as

the � ¼ v=
ffiffiffiffiffiffiffiffi
D�

p
goes through 2.

Equation (1) with v ¼ 0 and no noise is the well-known
Fisher-Kolmogorov-Petrovski-Piskunov equation and ad-

mits advancing waves with velocity vw ¼ 2
ffiffiffiffiffiffiffiffi
D�

p
as solu-

tions [7]. We can understand this phase transition as a
competition between gravity forcing the bacteria down-
wards with velocity v and a traveling wave of proliferation
which advances upward. For v > vw, the sedimentation
wave wins over the Fisher wave and leads to an exponential
profile, while for v < vw the Fisher wave leads to a uni-
form bacterial density throughout the sample. However,
Eq. (1) actually yields a transient traveling wave for v >
vw only. The transition is reminiscent of transitions in
interface depinning [8]; in a branching random walk with
an absorbing wall [9], and of extinction transitions in
inhomogeneous biological systems [10]. We note that a
linearized version of our Eq. (1) with � ¼ 0 and different
boundary conditions was considered in Ref. [11] to de-
scribe microorganisms advected in a river and resultant
extinction. We believe that our analysis should apply to this
problem as well. We also stress that the transition would be
washed away by translational invariance or periodic
boundary conditions, which are usually considered [7,10].
The existence of a nonequilibrium phase transition at

� ¼ �c ¼ 2 is confirmed by numerical solution of the
noiseless version of Eq. (1) using a standard finite differ-
ence scheme. An example of a series of steady-state solu-
tions for different values of � is shown for a sample of size

L ¼ 20
ffiffiffiffiffiffiffiffiffiffi
D=�

p
, in Fig. 1(c). Increasing the system size, the

segment of the sample at � ¼ 1 in the uniform regime
increases (data not shown), analogous to equilibrium phase
transitions. It is interesting to consider the behavior of the
decay length of the exponential density profile in the
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FIG. 1 (color online). The average density � versus height z
for a suspension of motile and reproducing active particles in
gravity. Simulation results (model I), with (a) � ¼ 3:6, and
(b) � ¼ 1:4. (c) Numerical solutions of the noiseless continuum
equation (1). (d) The dependency of the sedimentation length lsed
on v (in units of

ffiffiffiffiffiffiffiffi
D�

p
; the dashed line gives the colloidal value

at � ¼ 0, denoted by z0 in the text).
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sedimentation regime (an effective sedimentation length)
as a function of j�� �cj. This sedimentation length is akin
to a scaling length in an equilibrium phase transition. We
find that after correcting for a small L-dependent shift in
�c, the sedimentation length does not diverge at the tran-
sition, and is only at most �20% larger than the corre-
sponding sedimentation length with no growth (� ¼ 0). If
we focus on the steady-state concentration value, e.g., in
the middle of the sample, it switches abruptly, for L ! 1,
from 0, for � > �c, to 1, for � < �c. These observations are
consistent with a discontinuous phase transition.

For large but finite systems, we find evidence of an
intriguing spontaneous banding of the sedimenting APs,
which occurs very close to � ¼ �c. An example is shown in
Fig. 2, in which two steady-state regions coexist in the bulk
of the sample, one in which � is practically 0 and another
one in which it is�1. This kinklike solution, which we call
a ‘‘sedimentation band,’’ is similar to a cline, found in the
population biology literature when solving a reaction-
diffusion equation, similar to Eq. (1), but with v ¼ 0 and
a reaction term which is cubic in � [12]. In our case,
however, the existence of sedimentation bands is more
surprising, as without advection the state at � ¼ 0 is
unstable, and bands arise due to the vicinity of a phase
transition. In this respect, our sedimentation banding is
more akin to shear banding, which is obtained when
some complex fluids such as liquid crystals and wormlike
micelles in the isotropic or disordered phase, are subjected
to a shear, slightly smaller than that needed to order them
completely [13]. Sedimentation bands appear in an in-
creasingly small window of � as L increases, and disappear
in the thermodynamic (L ! 1) limit.

Would it be possible to observe the transition we predict
in a real bacterial suspension? For E. coli in water, v &
0:1 �ms�1 [14] and is fixed, while D * 102�m2 s�1 [4].

In rich, well aerated media maintained at the optimal
temperature of 37 �C, the population doubles every �20
min, giving �� 10�3 s�1, and � � 0:3. It is possible to
culture the bacterium in what is known as ‘‘motility buf-
fer,’’ in whichD is maintained, but growth essentially stops
(� ! 0), allowing the tuning of � from 0.3 through 2 to
arbitrarily large values, thus permitting the observation of
our transition in principle.
In this context, it is important to note that the pathway to

steady state may be quite slow. This is particularly true
close to �cðLÞ, and in the region where sedimentation
bands form. In the banding regime for large sample size
L, we also find that the behavior of the part of the sample
close to the top, or just after the boundary of the band,
display nonmonotonic behavior. The density first in-
creases, as if the systems transiently entered the uniform
regime, to decay later on to reach equilibrium [see
Fig. 3(a)]. The time scale needed to reach equilibrium,
teq, is plotted in Fig. 3(b) as a function of the distance

from the transition point. Larger systems take longer to
equilibrate, while close to criticality we find that teq in-

creases as a power law of j�� �cj�a, with a ’ 1 above the
transition, consistent with [9] and confirming the presence
of a phase transition at �c ¼ 2. These results applied to
APs with � ¼ 10�4 s�1 predict that close to the transition,
it may take up to several months for a column of 10 cm
height to reach steady state.
Next, we discuss the role of noise, i.e., the case �ð�Þ � 0

in Eq. (1). If � ¼ 0 is to be an absorbing state, we need to
go beyond the case �ð�Þ ¼ �0 > 0, and consider instead a
density-dependent amplitude �. The natural choice is � ¼
�0

ffiffiffiffi
�

p
, which is justified by a central limit argument relat-

ing the variance of the noise to the number of active
particles [15,16]. Increasing �0 favors large fluctuations
and may locally bias the system towards the absorbing
state. We observe that as �0 is increased the sedimentation
regime is enhanced at the expense of the growth one (see
Fig. 4). This is consistent with a negative shift in the Fisher
wave velocity due to noise [17]. The nonequilibrium phase
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FIG. 2 (color online). Steady-state diagram in the (v, L) plane
for the noiseless version of Eq. (1) (with � ¼ D ¼ 1). A profile
is ‘‘banded’’ if the cline stays in the bottom 75% of the sample.
Typical concentration profiles are also shown, together with a
color scale for the density.
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FIG. 3 (color online). (a) Dynamics of the density profile in a

system with L ¼ 30 (in units of
ffiffiffiffiffiffiffiffiffiffi
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), and with � ¼ 2:1. The

times corresponding to each profile are (from left to right) 0.99,
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sample is cut for color readability). (b) Plots of the time needed
to get to steady state (in units of 103 ��1), as a function of v (in
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p
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boundary shown in Fig. 4 is found by locating the maxima
of the order parameter fluctuations.

Equation (1) with v ¼ 0 describes directed percolation
(DP) [15], the generic university class of nonequilibrium
transitions from an absorbing state (� ¼ 0) to a fluctuating
state (� > 0). The dimensionless control parameter is in

this case �0=ð�2
0D�Þ1=4. Thus Fig. 4 becomes an extension

of the DP phase diagram to include a v axis. Intriguingly
the transition we have studied for �0 is discontinuous
whereas the DP transition at v ¼ 0 is continuous.
Therefore one may speculate that there is a singular or
even tricritical point along the critical curve vcð�0Þ. This
scenario might be similar to what occurs in the XY model,
where switching the XY spin into a velocity can result in a
discontinuous transition [18].

We have already pointed out that with typical values of v
and D in a suspension of E. coli, it may be possible to
‘‘tune’’ the growth constant � to bring the system from the
sedimentation to the uniform regime according to our
predictions. In reality, these experiments need stringent
controls, e.g., to make sure that the bacteria are not en-
gaged in any form of chemotaxis, which would render D
dependent on concentrations of chemical species (nutrient,
oxygen, waste products, etc.). The extra level of complex-
ity introduced can be modeled by adding a chemotactic
term to Eq. (1), and coupling it to a reaction-diffusion
equation, e.g., as in the Keller-Segel model [19].
Moreover, we have shown that the time scales for reaching
steady state can be long, reaching Oð103Þ in units of the
inverse growth rate��1 in the vicinity of the transition. But
in a bacterial culture, � itself is only approximately con-
stant during what is known as the ‘‘exponential’’ growth
phase, after which saturation in population density and
then death follow. Thus, steady-state experiments at � �
�c are likely impractical.

Clearly, our model also neglects hydrodynamic interac-
tions [20], which may (for example) cause swimmers to
attract. Thus, hydrodynamics could have highly nontrivial
effects, e.g., concerning the approach to steady states.

However, we believe that the qualitative features of the
transition we have identified may survive, because these
are due to the competition between gravity and Fisher
wave fronts, which should be generic. Also, bacterial
motility and its hydrodynamic effects can be ‘‘turned
off’’ by genetic modification or environmental conditions.
In summary, we have shown that the physics of

motile and ‘‘reproducing’’ active particles in a gravita-
tional field yields a surprisingly nontrivial phenomenology.
We have found that increasing the growth rate from zero,
the system makes an abrupt transition from a sedimenta-
tion regime in which the density decays exponentially with
the distance from the bottom of the container, to a uniform
growth-dominated regime in which the density is practi-
cally constant spatially. The essential physics is that of a
balancing between a downward gravitational flux, and an
upward diffusion-growth flux. Using values appropriate to
E. coli, we predict it may be possible to tune the growth
rate of the bacterium to allow observation of these two
types of behavior in a real bacterial suspension, although
slow kinetics may preclude detailed study of the transition
regime (� � �c) itself.
We thank O. E. Croze and B. Derrida for helpful

discussions.
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