
Perturbed Kerr Black Holes Can Probe Deviations
from General Relativity

It has been claimed [1] that the existence of the
Kerr(–de Sitter) solution in many modified gravity theories
implies that its verification around an astrophysical black
hole (BH) cannot probe deviations from general relativity
(GR). This would have implications for current attempts to
test GR using BHs [1]. While this is true for electromag-
netic observations, we argue that gravitational wave (GW)
experiments can in principle distinguish Kerr BHs in GR
and in modified gravity theories.

Reference [1] considered fðRÞ gravity, quadratic gravity,
and vector-tensor gravity. These theories are built so as to
have maximally symmetric solutions (Minkowski or
de Sitter) in vacuum, and this is done by imposing that
the field equations reduce to GR if R;� ¼ 0, R�� ¼
Rg��=4, and T�� ¼ 0. As such, it had long been known

that Kerr–de Sitter, which satisfies these conditions, is a
solution in these theories. Moreover, these theories admit
vacuum solutions different from Kerr, as noted also in
Ref. [1]. [The only exception is Palatini fðRÞ gravity,
which reduces to GR in vacuum.] Astrophysical BHs
form by gravitational collapse, and there is yet no guaran-
tee that this will lead to a Kerr BH if this solution is not
unique.

However, we will set this (potentially important) issue
aside, as done in Ref. [1], and show that even a Kerr BH
permits probing deviations from GR. Indeed, the (vacuum)
metric perturbations over a Kerr BH in the theories
considered in Ref. [1] behave differently from GR.
Again, the exception is Palatini fðRÞ gravity, as this re-
duces to GR in vacuum. We use metric fðRÞ gravity as an
example, and assume fð0Þ ¼ 0: this is required to have a
Kerr (and not Kerr–de Sitter) BH [1], which has R ¼
R�� ¼ 0 thus simplifying the calculation. With h �
r�r� and 0 � @=@R, the vacuum field equations are

f0ðRÞR�� � 1
2 fðRÞg�� � ðr�r� � g��hÞf0ðRÞ ¼ 0:

(1)

We denote the metric perturbation by h�� and use the

Lorenz gauge, defined by r�
�h�� ¼ 0, with �h�� � h�� �

hg��=2. This is always possible: �h�� transforms as

�̂h �� ¼ �h�� �r��� �r��� þ g��r��
�; (2)

and we only need to imposeh�� ¼ r�
�h�� [2]. Perturbing

Eq. (1) over a Kerr background in this gauge, we have

h �h�� þ 2R����
�h�� ¼ ��ðr�r� � g��hÞh �h; (3)

where � � f00ð0Þ=f0ð0Þ. In GR f0ð0Þ ¼ 1 and f00ð0Þ ¼ 0,
and thus � ¼ 0. Also, in GR it is possible to set �h ¼ 0,
although only in a globally vacuum spacetime, using the
residual freedom of the Lorenz gauge (one can perform a
transformation with �� satisfying h�� ¼ 0) [2]. From

Eq. (2) it follows that we need r��
� þ �h=2 ¼ 0 in order

to have �̂h ¼ 0. Taking the ‘‘box’’ of r��
� þ �h=2, and

using the trace of Eq. (3) and h�� ¼ R ¼ R�� ¼ 0, one

can show that r��
� þ �h=2 satisfies the homogeneous

wave equation only if f00ð0Þ ¼ 0 (as in GR): it is then
possible to choose initial data for �� on a Cauchy hyper-
surface such that r��

� þ �h=2 and its derivative normal to

the hypersurface vanish, thus ensuring r��
� þ �h=2 ¼ 0

everywhere. This is not possible if f00ð0Þ � 0, and �h cannot
then be zeroed (even in globally vacuum spacetimes).
Thus, Eq. (3) differs from its GR analog. For example,
over a Minkowski background, besides the propagation
modes of GR, Eq. (3) also has a plane wave solution �h�� /
ð��� þ k�k�=m

2Þ expðik�x�Þ, where k � !ð�Þ@t þ �n

(n being the propagation direction) and !ð�Þ2 �
�2 þm2 [with m2 � ð3�Þ�1 > 0: if � < 0 the gravity the-
ory is nonviable [3]]. These GWs cannot be zeroed in the
Lorenz gauge, correspond to massive gravitons with ve-
locity d!=d� < 1 (detectable by LISA [4]), and their
polarization differs from GR. Note that this mode corre-
sponds to scalar field excitations [cf. equivalent Brans-
Dicke theory with a potential [5]]. It is also present in
Brans-Dicke theory with no potential [6] and it affects the
orbital evolution of binary systems [4,6].
In conclusion, while the Kerr solution is common to

many gravity theories, its perturbations are not. Because
GWs from perturbed Kerr BHs behave differently in differ-
ent theories, their detection can be used to discriminate
them, and the concerns of Ref. [1] seem unjustified.
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