Comment on "Failure of the Work-Hamiltonian Connection for Free-Energy Calculations"

Nonequilibrium work relations establish a connection between nonequilibrium work values and equilibrium free energies. In a recent Letter, Vilar and Rubi [1] (VR) argue that the definition of work used in these relations,

$$W = \int dt \frac{\partial H}{\partial t} = \int dt \dot{\lambda} \frac{\partial H}{\partial \lambda}, \tag{1}$$

is incorrect, and therefore the relations themselves are fundamentally flawed. In our investigations, however, we have reached the opposite conclusion [2], as have Imparato and Peliti [3] in direct response to VR.

In Eq. (1), λ represents generalized coordinates (a_1, a_2, \cdots) describing the external bodies that we manipulate to act on the system of interest; W is the integral of force, multiplied by the displacements of these bodies [4]. Referring to Refs. [2–4] for a broader discussion, in this Comment we illustrate that W has exactly the properties we associate with thermodynamic work.

We consider the model system analyzed in Ref. [1], described by the Hamiltonian

$$H(x;f) = \frac{1}{2}kx^2 - fx,$$
 (2)

and evolving under Langevin dynamics with friction coefficient $\gamma=1$. The force f(t) is switched on uniformly, from f(0)=0 to $f(\tau)=f_0$; outside the time interval $0 < t < \tau$ the force is held constant. This system evolves from equilibrium state A in the distant past (f=0), to equilibrium state B in the distant future $(f=f_0)$. The initial and final Hamiltonian functions and canonical distributions are shown in Fig. 1. Since H(x;f(t)) is constant for t < 0 and $t > \tau$, its value during these times is identified with the energy of the system [1]. Using the equilibrium distribution $p \propto \exp(-\beta H)$, we compute the internal energy $(E=\int pH)$ and the entropy $(S=-\int p\ln p)$ for states A and B: $E_A=(2\beta)^{-1}$, $E_B=(2\beta)^{-1}-f_0^2/(2k)$, $S_A=S_B=[1-\ln(\beta k/2\pi)]/2$. From the thermodynamic definition of free-energy, G=E-ST [5], we then get

$$\Delta G = G_B - G_A = -\frac{f_0^2}{2k}. (3)$$

The negative value of ΔG reflects a decrease in internal energy, with no change in entropy (see Fig. 1).

For this model, the distribution of work values over an ensemble of realizations of the process, $\rho(W)$, can be obtained using the approach of Ref. [6]. This distribution is a Gaussian with mean and variance.

$$\langle W \rangle = -\frac{f_0^2}{2k} + \frac{\beta \sigma_W^2}{2}, \qquad \sigma_W^2 = \frac{2f_0^2}{\beta k^2 \tau} \left[1 + \frac{e^{-k\tau} - 1}{k\tau} \right].$$
(4)

This result implies that: $W \rightarrow \Delta G$ for every realization in

FIG. 1. The Hamiltonian functions and equilibrium distributions (shaded) at f = 0 and $f = f_0$.

the reversible limit $(\tau \to \infty)$; $\langle W \rangle > \Delta G$ in the irreversible case (finite τ); and $\langle e^{-\beta W} \rangle = e^{-\beta \Delta G}$ for any value of τ . Thus the work defined by Eq. (1) is consistent with the second law of thermodynamics, and its exponential average correctly gives ΔG , when the free-energy is defined by the expression G = E - ST.

By contrast, VR obtain $\Delta G > 0$ for this model (Eq. 4 of Ref. [1]), and assert that a negative value would be "inconsistent with a nonspontaneous process." We disagree. An undisturbed system certainly seeks to minimize its free-energy (e.g., after the removal of a constraint), but when an external agent varies a parameter of the system, such as the field f above, then there is no universal restriction on the sign of the free-energy change. For instance, by manipulating a piston we can either increase or decrease the Helmholtz free-energy of a gas, according to whether we compress or expand the gas.

J. Horowitz and C. Jarzynski University of Maryland College Park, Maryland 20742, USA

Received 29 January 2008; published 26 August 2008 DOI: 10.1103/PhysRevLett.101.098901 PACS numbers: 05.70.Ln, 05.20.-y, 05.40.-a

- [1] J. M. G. Vilar and J. M. Rubi, Phys. Rev. Lett. 100, 020601 (2008).
- [2] C. Jarzynski, C.R. Physique 8, 495 (2007); J. Horowitz and C. Jarzynski, J. Stat. Mech. (2007) P11002.
- [3] A. Imparato and L. Peliti, arXiv:0707.3802v1; L. Peliti, J. Stat. Mech. (2008) P05002.
- [4] See, e.g., J. W. Gibbs, Elementary Principles in Statistical Mechanics (Scribner's, New York, 1902), p. 42; K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998).
- [5] The distinction between Gibbs and Helmoltz free energies is not relevant for this model.
- [6] O. Mazonka and C. Jarzynski, arXiv:cond-mat/9912121.