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We introduce loop ranking, a new ranking measure based on the detection of closed paths, which can be

computed in an efficient way. We analyze it with respect to several ranking measures which have been

proposed in the past, and are widely used to capture the relative importance of the vertices in complex

networks. We argue that loop ranking is a very appropriate measure to quantify the role of both vertices

and edges in the network traffic.
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Finding the most important vertices is an important
problem in complex network analysis [1]. In technological
networks, such as the Internet, the main hubs (i.e., the
vertices with many links to other vertices) play an impor-
tant role in the stability of the network. Instead, the re-
moval of any kind of species in food webs may cause the
disintegration of the corresponding network [2]. The order
of importance of the vertices is referred to as a ranking. In
general the importance of a vertex, and thus its ranking,
depends very much on the type of network which is under
consideration.

The most simple topology based ranking measure is the
degree, i.e., the number of neighboring vertices of a vertex.
While the degree is easy to compute, it is not a very refined
measure, as it solely depends on the local neighborhood
around a vertex. Several more global measures [3–8] have
been proposed which do take the overall structure of the
network into account. Apart from finding a fast way to
compute these measures, another challenge is usually to
decide which of these measures are more appropriate for
which type of network [9].

We start our reasoning from the observation that the link
structure of complex networks describes the topology of
interactions taking place in a dynamic complex system: the
importance of a vertex (or edge) to the network traffic is
related to the number of paths or walks it lies on [10].

The topology of most real-world networks is represented
by a directed graph GðV; EÞ which is completely charac-
terized by its set V of N vertices i and by the set E of M
directed edges i ! j, where i and j are said to be the
starting and ending vertex of the directed edge i ! j. For
undirected graphs either one of the ending vertices i and j
of the edge fi; jg can be the ending or starting vertices. We
can associate a weight ri!j to each one of the directed

edges i ! j. For unweighted graphs all edge weights are
uniformly equal to one. We denote the set of edges or the
set of vertices of these edges distinct from i (as it is always
clear from the context) of which i is an ending vertex or
starting vertex as @þi or @�i , respectively. Correspondingly,
the in-degree dþi and out-degree d�i of a vertex i are de-
fined as the sum of the weights of the edges of which that
vertex i is an ending vertex, or starting vertex, respectively.

Walks are defined as sequences of vertices (i1; . . . ; iL),
where for each couple of subsequent vertices ik�1 and ik,
for k ¼ 2; . . . ; L, the directed edge ik�1 ! ik belongs to E.
As such, they can cross the same edge or vertex infinitely
many times. Instead, paths are defined as self-avoiding
walks. In particular, a cycle or loop is a closed path.
More formally, it is defined as a sequence (i1, i2 . . . ; iL,
i1) of vertices, where for all k ¼ 1; 2; . . . ; L these ik are
distinct from each other, and, for all k ¼ 2; . . . ; L, each
couple of subsequent vertices ik�1 and ik are connected by
a directed edge ik�1 ! ik belonging to E, as does iL ! i1.
The weight of any of these subgraphs is defined as the
product of the weights ri!j of the edges composing that

subgraph. In case of a cycle defined by a sequence (i1,
i2; . . . ; iL, i1), its corresponding weight is given by w½C� ¼
riL!i1

Q
L
k¼2 rik�1!ik .

One measure which is widely used to find the most
relevant vertices of a network is PageRank [5]. PageRank
is an iteratively computed ranking measure where the
PageRank of a given vertex depends on the PageRank of
its neighboring vertices. More formally, the PageRankP ðiÞ
of a vertex i is defined as

P ðiÞ ¼ c
X

j2@þi

P ðjÞ
d�j

þ 1� c

N
; (1)

where c is a damping factor chosen in the interval �0; 1�. In
matrix form this becomes P ¼ cCTP þ 1�c

N �, where P is

a N-dimensional vector, � is a N-dimensional vector with
all elements equal to one, and the elements Cij of the N �
N matrix C are equal to 1=d�i if the edge i ! j belongs to
E, and zero otherwise. As the sum of the entries of a
column of this matrix C is equal to one, it can be inter-
preted as a Markov matrix. The resulting PageRank is then
proportional to the probability with which a randomwalker
will come across a given vertex. As such, PageRank is an
importance measure for vertices which, being based on
random walks, takes the overall structure of the network
into account. However, the question naturally arises
whether it is not preferable to emulate the behavior of a
more efficient self-avoiding random walker.

PRL 101, 098701 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

29 AUGUST 2008

0031-9007=08=101(9)=098701(4) 098701-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.101.098701


Motivated by the latter observation, we introduce a new
ranking measure based on paths rather than walks. Several
centrality measures based on either the number or length of
shortest paths passing through or ending at a given vertex
have already been proposed [7]. In particular, betweenness
centralityB (BC) of a given vertex (or edge) is the fraction
of shortest paths on which that vertex (or edge) lies.
Defining �k;l as the number of shortest paths between k
and l, and �k;lðiÞ and �k;lði ! jÞ the number of these

passing through i or i ! j, we have

B ðiÞ¼ X

k;lð�iÞ2V

�k;lðiÞ
�k;l

; Bði! jÞ¼ X

k;l2V

�k;lði! jÞ
�k;l

; (2)

for the BC of vertex i and the edge i ! j, respectively. One
fundamental problem that prevents these measures from
becoming widely used in real network analysis is that they
cannot be computed as fast as, for example, PageRank [7].
Moreover, a measure based on shortest paths only may not
be adequate enough as also longer paths (with possibly
higher weights) could add to the centrality of a given
vertex, or edge [10].

We propose a ranking based on the presence of closed
paths, through a given vertex. We consider the probability
of presence of cycles [11–14], rather than all, i.e., also
open, paths, for a specific reason; it allows us to compute
ranking by means of belief propagation (BP), a distributed,
message passing algorithm which converges in linear time
in the system size to the marginal probabilities of presence
of these cycles. This restriction to closed paths results in a
ranking which reflects the geometric position of each one
of the vertices, and gives a subjective view of how each
vertex sees the overall network based on paths.

In particular, we propose a ranking based on the sums of
the weights of these cycles. As such it represents the
probability with which a self-avoiding walker returns to
the same vertex while exploring the network, taking the
weight of each path into account. We define the loop
ranking L of a vertex i, or edge i ! j, as the sum of the
weights w of all cycles C passing through that vertex i, or
edge i ! j respectively, i.e.,

L ðiÞ ¼ X

C3i

w½C� and Lði ! jÞ ¼ X

C3ði!jÞ
w½C�: (3)

On random graphs loop ranking is connected to ranking by
degrees, since vertices with the highest value of (d�i dþi )
live on many loops [15]: the most relevant information
given by loop ranking is about nonrandom correlations that
can be present in real networks. In practice, we do not
compute the actual loop ranking, but rather the marginal
expressing the probability with which a cycle passes
through a given vertex, i.e.,LðiÞ=PCw½C�, which produces
the same ordering. The latter can be obtained by reformu-
lating the problem of identifying all cycles of a given graph
as a constraint satisfaction problem [12–14].

We define an appropriate phase space in which sub-
graphs such as cycles are represented by a unique configu-

ration. We associate with each edge (i ! j) an Ising-like
variable Si!j, where Si!j takes on the value zero or one if

the corresponding edge (i ! j) belongs, or does not belong
to the considered subgraph, respectively. In this way, we
establish the desired one-to-one correspondence between
any simple subgraph of the original graph G and all con-
figurations defined by any of 2M sequences S ¼
ðS1; . . . ; SMÞ. For simplicity, we also introduce the notation
Si which denotes the set of all edge variables Si!j and Sj!i

of which i is a starting or ending vertex.
We can now define the probability law

Prob ½S� ¼ 1

Z

Y

ði!jÞ2E

ðri!jÞSi!j

Y

i2V

fiðSiÞ; (4)

where the local constraints fiðSiÞ are equal to 1 ifP
j2@þi

Sij ¼
P

j2@�i
Sij is 0 or 1 and are equal to 0 other-

wise, and Z is a normalization constant. The complete set
of local constraints fi ensures that only configurations
representing subgraphs composed of (possibly vertex dis-
joint) directed cycles have a nonzero probability (4). The
first product makes the probability proportional to the
weight of the subgraph they represent.
An approximation to the marginals of (4) can be ob-

tained using a local Monte Carlo algorithm [13]. However,
for factorizable probability laws, such as (4), they can also
easily be computed by means of message passing algo-
rithms, such as belief and survey propagation [16]. BP is a
distributed, iterative algorithm which is intrinsically linear
in the system size. It requires the introduction of 2M real-
valued message variables,M of type xi!j½Si!j� in the same

direction of the edges, and M of type yj!i½Si!j� in the

opposite direction. Initially, they all take on a random value
in the interval [0, 1]. Each BP iteration consists in an
update of these 2M variables. Assuming (4), the update
rules are

xi!j½Si!j� ¼
P

k2@þi
xk!i½Sk!i�

1þP
k2@þi

xk!i½Sk!i�
P

k02@�i nj yk0!i½Si!k0 � ;

yj!i½Si!j� ¼
P

k2@�j
yk!j½Sj!k�

1þ P

k2@þj ni
xk!j½Sk!j� P

k02@�j

yk0!j½Sj!k0 � :

On acyclic graphs, the successive repetition of these BP
iteration steps always leads to a fixed point solution. For
generic graphs containing cycles, BP does not necessarily
converge [17]. However, at least for sparse graphs, which
do not contain too many small loops and locally are tree-
like, usually it does (for recent results see [18]). Thus we
expect the BP algorithm to give reasonable results for
typical directed real-world networks, where the number
of loops is smaller than in the random case [15].
Once the fixed point has been reached, the values of the

message variables can be used to obtain the marginal
probabilities. We are interested in the vertex and edge
marginals expressing the probability with which a cycle
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contains that particular vertex or edge. Upon convergence
of BP, these marginals can be obtained as

pi ¼
P

k2@þi
xk!i

P
k02@�i

yk0!i

1þP
k2@þi

xk!i

P
k02@�i

yk0!i

;

and pi!j ¼
xi!jyj!i

1þ xi!jyj!i

;

respectively. On a generic, cyclic graph, the above expres-
sions are an approximation to the actual marginals.
However, in general, these approximations are very rea-
sonable to work with. The marginals of (4) express the
probability with which a vertex, or edge, is part of a sub-
graph composed of possibly several vertex disjoint directed
cycles. Thus, exact marginals of (4) are possibly an over-
estimation of the desired marginals expressing the proba-
bility of presence of a (single) closed path. However, for
weighted graphs where the edge weights have been re-
scaled such that they all lie in the interval [0, 1], this effect
is largely reduced [14].

To get hints about which is a good ranking measure for
dynamic networks, we have looked at a number of ex-
amples and particular cases. We discuss here explicitly the
case of two directed small world networks that we consider
very telling. We assume them to be unweighted for sim-
plicity. We first consider the graph shown in Fig. 1. If we
only take the outer ring of edges into account, all informa-
tion can be exchanged between any two vertices in two
ways, either in clockwise or counterclockwise direction: in
such a case all vertices and edges are considered to be
equally important.

The presence of the directed ‘‘short-cut’’ edges (which
are all outbound from vertex 0) reduces the length of the
shortest paths, a feature which is typical of most real-world
networks. The resulting ‘‘smaller world’’ (from the point of
view of a single vertex) has a large impact on the mobility
inside a network. In particular, the vertex 0 will play a more
crucial role than other vertices in dispatching packages
along the network. Similarly, though in a minor way, the
ending vertices of the extra outbound short cuts, i.e., 3, 5,
and 8, should play a more important role in the traffic along
this network. Also, we expect the presence of these edges

to break the symmetry of the role of the single edges in the
network flow.
The results according to the various ranking schemes

and corresponding ordering for the vertices of graphG1 are
reported in Table I. We have rescaled the PageRank, loop
ranking, and BC results such that they all lie in the interval
[0, 1]. For these rather small graphs which contain a
number of small loops BP was always found to converge.
Clearly, the different ranking schemes attribute various
degrees of importance to the vertex 0. As the PageRank
of a vertex depends primarily on the number of edges
directed towards that vertex and the rescaled PageRank
they transmit (rescaled by the out-degree of their respective
starting vertices), vertex 0 of graph G1 has a relative low
PageRank. Instead, as it does lie on most of the (closed)
paths of graph G1, its central role is acknowledged by both
the loop ranking as the BC. Moreover, the latter two
rankings recognize the increased role of the vertices 3, 5,
and 8 with respect to the other vertices, while PageRank
makes no clearcut difference between them. For the other
vertices, the ordering does differ depending on which
ranking is considered, as loop ranking depends on all
closed paths, while the BC is only based on the number
of shortest paths.
The ordering produced by loop ranking and the BC is

schematically presented by Fig. 1. As in case of the verti-
ces, loop ranking and the BC do not produce the exact same
ordering of edges, but there are no essential huge shifts
between the two corresponding rankings. Note that edges
with high ranking usually connect one vertex with high and
another with low ranking. The presence of these edges has
been observed in the case of protein networks [19], where
it was argued that they play a crucial role in the overall
robustness of the network.
GraphG2, shown in Fig. 2, represents a slightly different

type of small world network than G1. The extra shortcut
edges are in this case pointing towards vertex 0, increasing
its role in dispatching information along the network. We
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FIG. 1 (color). Directed small world network G1. The various
colors express the ranking of the vertices and edges based on
loop ranking (on the left) and betweenness centrality (on the
right).

TABLE I. Ranking of the vertices of the small world graph G1

and G2 shown in Figs. 1 and 2, respectively, according to the
various ranking measures. The corresponding values of their
PageRank, loop ranking, and betweenness centrality, rescaled
such that they lie in the interval [0, 1] [e.g., ðLðiÞ �
LminÞ=ðLmax �LminÞ], are also included.

PG1
ðiÞ LG1

ðiÞ BG1
ðiÞ PG2

ðiÞ LG2
ðiÞ BG2

ðiÞ
5 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00

4 0.88 8 0.57 5 0.47 1 0.62 8 0.57 5 0.45

3 0.83 3 0.47 3 0.31 9 0.53 3 0.47 3 0.28

6 0.81 5 0.41 8 0.26 2 0.31 5 0.41 8 0.25

7 0.68 2 0.30 1 0.17 8 0.31 2 0.30 1 0.20

8 0.58 6 0.14 4 0.10 3 0.17 6 0.14 4 0.10

2 0.43 7 0.07 6 0.10 7 0.09 7 0.07 6 0.09

0 0.08 1 0.05 9 0.06 5 0.05 1 0.05 9 0.06

9 0.07 9 0.03 7 0.05 6 0.04 9 0.03 7 0.03

1 0.00 4 0.00 2 0.00 4 0.00 4 0.00 2 0.00
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also expect the starting vertices 3, 5, 8 of the shortcut edges
to play an increased role.

Our results are also in Table I. All rankings recognize the
vertex 0 as the more important one. Loop ranking and BC
also capture the special status of the vertices 3, 5, and 8,
even if in a different order. This is not the case for
PageRank, due to the fact that it does not consider the
out-degree to be very relevant. A comparison of the loop
ranking of the two graphs shows that the in- and outbound
edges of the vertices are treated in an identical way, result-
ing in the same set of loop ranking values for all vertices.
This is not the case for the BC, as it does not rely on all, but
only on the shortest paths.

Figure 2 also includes a schematic representation of the
edge and vertex ranking according to loop ranking and the
BC of graph G2. In the case of graph G2, the edges leading
away from vertex 0 play a more significant role, while in
graph G1 the edges going to vertex 0 are more important
for obvious reasons.

We have also compared loop ranking to subgraph cen-
trality (SC), the quantity introduced in [8]: here nodes are
characterized by their participation in all subgraphs in the
network. SC shares some features with the other ap-
proaches (for example the vertex 0 is always the more
important), but has some different attitudes (for example
recognizing an important role for vertex 9, that is very low
in all other rankings: this is reasonable given the definition
of SC) that differ from the other approaches.

In conclusion, loop ranking reflects the role of vertices
and edges during the dissipation of information along the
network. We have discussed unweighted small world net-
works to allow for an easier comparison between the
various ranking methods. Note that loop ranking can natu-
rally be extended to weighted networks, which is a clear
advantage in the analysis of real-world networks.

While PageRank is more sensitive to the in-degree of a
given vertex, loop ranking treats all paths (passing in either
direction through a given vertex or edge) in an equivalent
way. It produces a slightly different ordering of importance
with respect to the BC as it takes all paths (with their
relative weight) into account. Another advantage of the
path based rankings we considered here is that they pro-
duce both results for the vertices as the edges. Moreover,
loop ranking can be computed by means of BP, which has a

linear time complexity in the system size, and this is a
remarkable practical advantage. This should also allow for
an easier dynamical analysis of rankings, an aspect which
has already been studied more carefully for the BC [20].
A limitation of loop ranking is that it is only based on

loops. As such, it can only produce results regarding the
vertices and edges belonging to the 2-core of the graph, i.e.,
the subgraph for which all vertices have an in- and out-
degree of at least one. It is reasonable to assume that the
2-core contains those vertices and edges which are impor-
tant to the traffic flow: integration with different schemes
could eventually allow to design ranking methods opti-
mized for different applications.
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FIG. 2 (color). Directed small world network G2; loop ranking
(left) and betweenness centrality (right).
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