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Intra-Landau-Level Cyclotron Resonance in Bilayer Graphene
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Interaction driven integer quantum-Hall effects are anticipated in graphene bilayers because of the near
degeneracy of the eight Landau levels which appear near the neutral system Fermi level. We predict that
an intra-Landau-level cyclotron resonance signal will appear at some odd-integer filling factors, accom-
panied by collective modes which are nearly gapless and have approximate k32 dispersion. We speculate
on the possibility of unusual localization physics associated with these modes.
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Introduction.—Because the Zeeman spin splitting in
most two-dimensional electron systems (2DESs) is much
smaller than the Landau-level (LL) separation, the mag-
netic band spectrum usually consists of narrowly spaced
doublets. When one of these doublets is half filled and
disorder is weak, Coulomb interaction physics leads to
ferromagnetism, i.e., to spontaneous spin polarization in
the absence of a Zeeman field [1-3]. In some circum-
stances [4] other approximate Landau-level degeneracies
occur, often associated with layer degrees of freedom.
These can also lead to broken symmetries which induce
quasiparticle gaps and hence interaction driven integer
quantum-Hall effects. The case of bilayer 2DESs is par-
ticularly interesting because the which-layer degree of
freedom doubles Landau-level degeneracies and leads to
exciton condensation [5,6] at odd filling factors and to
canted antiferromagnetic states [7] at even filling factors.
In this Letter, we address the still richer case of graphene
bilayer 2DESs in which chiral bands lead to an additional
degeneracy doubling [8] at the Fermi energy of a neutral
system. Bilayer graphene’s Landau-level octet is already
apparent in present experiments [9] through the 8(e?/h)
Hall conductivity jump between well formed plateaus at
Landau-level filling factors » = —4 and v = +4. We an-
ticipate that when external magnetic fields are strong
enough or disorder is weak enough [10], interactions will
drive quantum-Hall effects at the octet’s seven intermedi-
ate integer filling factors. We predict that these quantum-
Hall ferromagnets (QHFs) will exhibit unusual intra-
Landau-level cyclotron modes at odd filling factors, and
that the collective mode excitations at these filling factors
are nearly gapless even when there is no continuous sym-
metry breaking. Because the conductivity has Drude
weight centered near zero energy, we speculate that local-
ization physics and quantum-Hall related transport phe-
nomena will also be anomalous.

Graphene bilayer Landau levels.—When trigonal warp-
ing [11] and Zeeman coupling are neglected, the low
energy properties of Bernal stacked unbalanced bilayer
graphene are determined by electron-electron interactions
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and a band Hamiltonian [8] H = H, + H ., where

9 =L(0 sz) 0

2m\ 7> 0
and the influence of an external potential difference Ay
between the layers is captured by
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In Egs. (1) and 2), # = p + (e/c)A is the 2D Kinetic
momentum, 7 = 7, + i7ry, the 2 X 2 matrices act on the
pseudospin degree of freedom associated with the two low
energy sites [8] (the top and bottom layer sites without a
near neighbor in the opposite layer), v is the single-layer
Dirac velocity, y; ~ 0.4 eV is the interlayer hopping am-
plitude, and the effective mass m = vy, /2v? = 0.054m,.
JH describes both K (£ = 1) and K’ (¢ = —1) valleys
provided that we choose the pseudospin representation
(A, B) for K and (B, A) for K'.

Defining the usual raising and lowering Landau-level
ladder operators at, a with at = (I5/+/2h) 7, where I =
(he/eB)'/? = 25.6/(B[T])/2 nm is the magnetic length,
the zero-energy eigenstates of JH, can be identified using
the property that a®¢, = 0 for 2D orbitals with Landau-
level index n = 0, 1. In bilayer graphene the n = 0 and
n = 1 orbital Landau levels are members of the same octet.
This peculiarity is behind most of the physics explored in
this Letter. Neutral bilayer graphene’s Landau-level octet is
the direct product of three S = 1/2 doublets: real spin and
which-layer [12] pseudospins (as in a normal bilayer), and
the Landau-level pseudospin n = 0, 1 degree of freedom
which is responsible for new physics. Zeeman coupling
produces real spin-splitting A, while Ay, gives rise to layer
splitting as in normal bilayers, but also to a small splitting
of the Landau-level pseudospin which plays a central role
in the physics: A = Ayhw/y, = hwy, where hw =
2nv? /3y, = 2.14(B[T]) meV.

Octet Hund’s rules.—The octet HF Hamiltonian [13]
contains single-particle pseudospin splitting fields and di-
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rect and exchange interaction contributions:
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where n =0, 1 are LL indices, 7, 0 = t (b) are valley
indices, a, B =1 (l) are spin indices, and £,,) = 1(—1)
for the ¢ (b) layer and T (]) spins, respectively. In Eq. (3)
Pr =P, is the total electron density in layer 7. The
density-matrix p7}2; = (ciz(,ﬂc,,m) must be determined
self-consistently by occupying the lowest energy eigenvec-
tors of JH . The Hartree-field Ej; captures the electro-
static  contribution to the bilayer capacitance,
Ey = (€?/elg)(d/2lg), and the exchange fields capture
fermion quantum statistics:

d2
X = [ G Ve D), (D). )

In Eq. (4) v. are the symmetric and antisymmetric com-
binations of same (s) and different (d) layer electron-
electron interactions (v, = 2mwe?/eq, v, = v,e 99),
and the form factors [Fyy(q) = e~ @)"/4 F,i(q) = (ig, +
CIy)lB57((11’*)2/4/\/z =[Fo(—q)]", and Fy(q) =[1—
(qlg)?/2]e'~418°/4] reflect the character of the two differ-
ent quantum cyclotron orbits.

The solution of the Hartree-Fock equations for balanced
bilayers (A, = 0) is summarized in Fig. 1 using a Zeeman
field strength corresponding to B = 20 T. The large gaps
[~(7/8)"/2 in e%/ely units] separating occupied and
empty states at the odd-integer filling factors of primary
interest justify our weak-coupling theory. The octet filling,
proceeding in integer increments starting from filling fac-
tor v = —4, follows Hund’s rule behavior: first maximize
spin polarization; then maximize layer polarization to the
greatest extent possible; then maximize Landau-level po-
larization to the extent allowed by the first two rules. For
balanced bilayers the layer symmetric states (S) are filled
before the layer antisymmetric states (AS). The first four
states to be filled are (S,n =0,1), (S,n=1,1), (AS,n =
0,1), and (AS, n = 1, 1) in this order. This sequence is then
repeated for the next four states with down () spin. The
Hund rules imply that the Landau-level pseudospin is
polarized at all odd-integer filling factors between v =
—4 and v = 4. The physics of this new type of pseudospin
polarization is the main focus of this Letter. An important
distinction between layer and Landau-level polarization is
that the former is associated with spontaneous interlayer
phase coherence whenever a Landau level occupies both
layers simultaneously, whereas the latter polarization is
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FIG. 1 (color online). Filling factor dependence of the integer
filling factor HF theory occupied state (spectrum of the bilayer
graphene octet at Ay = 0). Energies of occupied (solid red
lines) and unoccupied (dashed blue lines) are in units of
(7/2)V/2e2 /ely. The Zeeman field A, value in these units is
0.023 at a magnetic field of 20 T. Octet space fractional pseu-
dospin polarizations offset for clarity: spin (red squares), valley
(green circles), and LL pseudospin (blue triangles).

driven by the Landau-level dependence of the microscopic
Hamiltonian.

Octet quantum-Hall ferromagnets have an interesting
and intricate dependence on the external potential Ay.
Because the two layers are close together, a small value
of Ay is sufficient to change the character of the layer
polarization from the XY spontaneous-coherence form to
an Ising polarization form in which one layer is occupied
before the other. We find that for Ay larger than a critical
value A7, the layer filling proceeds by filling the top layer
first. [For » = —3, A} =0.103(0.40) meV at B =
20(50) T.] As we explain later, this filling sequence has
qualitative consequences for the odd-integer filling factor
LL pseudospin polarized states.

Landau-level pseudospin dipoles.—We now focus on the
LL pseudospin fluctuations of a state with odd-integer
filling factor, freezing spin, and layer degrees of freedom.
The collective excitation spectrum of graphene bilayer
octets as a function of » and Ay will be described in full
detail elsewhere [14]. Fluctuating LL spinors are linear
combinations of n = 0 orbitals (even with respect to their
cyclotron orbit center) and n = 1 orbitals (odd with respect
to orbit center), and therefore carry an electric dipole
proportional to the in-plane component of their pseudo-
spin. Because dipole-dipole interactions are long range,
they play a dominant role in the QHF long-wavelength
effective action [3]. We find that

S[] = f dt[ f 2q A - i~ E[nﬂ], 5)

where the first term is the Berry-phase contribution [3,15]
and for small fluctuations away from m, =1 (full n =0
polarization)
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where A;; = A;;/(€2/€lp). The mass terms in Eq. (6) are
due to the single-particle splitting between n = 0 and n =
1 levels, and the interaction term is due to electric-dipole
interactions. The absence of interaction contributions to
the mass terms is a surprise, since the interaction is
Landau-level pseudospin dependent. We address this point
below. Because of the in-plane electric dipoles associated
with LL pseudospinors, the long-wavelength pseudo—spin-
wave collective mode dispersion is not analytic: Zw —
(A2, + Ape?q/e)'?, and for Aj; — 0 is proportional
to ¢*? when exchange interactions are included in the
energy functional. The in-plane dipoles are also respon-

|
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sible for the intra-Landau-level cyclotron resonance dis-
cussed below.

To explain the absence of interaction contributions to the
mass terms and to address shorter-wavelength fluctuations,
it is necessary to derive the action microscopically. It is
convenient to temporarily restrict fluctuations to one space
direction by considering Landau-gauge states in which the
LL pseudospins at different guiding centers X fluctuate
independently:

lylz]) = ]_[(szch + ZIXCIrx)|O>r @)
X

where the spinor components z,,x satisfy the normalization
constraint  |zox|> + |z1x|> = 1. The corresponding
imaginary-time action is

S[zz]=8Sp+¢&= f dTZZnXaTZnX + Z( Z[H(X X') = F(X = X")1Z,,, xZnyx Znyx1 Znyx + §ALLZIXZIX’) 3

xXx'

where Sy is the Berry phase term and & = (y[z]|(H +
H )l(z]) is the energy functional. In Eq. (8) the direct
(H) and exchange (F) energy contributions depend on the
LL pseudospin labels,

::;::z<x>——[2

Fuini(X) =
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q

This action can be identified as the Schwinger boson [15]
coherent state path integral representation of a model with
pseudospins at each guiding center. We can introduce a
bosonic creation operator a,,y corresponding to Z,x and let
[z, 71— Hlat, al.

To analyze fluctuations around the HF mean field state,
we use the linear spin wave approximation

agx — 1 — %a}}ax, a;x — ay. (10)

Taking the continuum limit (1/L,)¥ x = [dX/(27lp), the
action describing harmonic fluctuations can be written in
Fourier space as § = S, + 65, where

=53 oS T o)

A
+ Tq(aqa,q + a;atq):l, (11)
with
lglpl _ 2 ~ N
£, =0 [ap(1=2 lalyple 2+ b,
A _lalsl i, P’ -/
=5 ¢ - dp7J2(qpr)e , (12)

In Eq. (11) we have restored [16] two-dimensional wave

I

vectors to recognize the system’s spatial anisotropy. The
first and second terms in the above expressions capture the
direct (H) and exchange (F) contributions, respectively,
and J, and J, are the zeroth and second order Bessel
functions. The quadratic action in Eq. (11) has the familiar
Bogoliubov form, and the energy dispersion of the collec-
tive mode is given by

w(g) = %[(1\E+ fq) |Aq|2]l/2. (13)

As shown in Fig. 2, this collective mode has a roton
minimum at gl = 2.3 and approaches the Hartree-Fock
theory band splitting for ¢ — oo as expected [1]. The
surprising absence of interaction contributions to the gap
at g = 0 can be understood by examining the dependence
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FIG. 2 (color online).  Collective mode w,, of the Landau-level
pseudospin polarized state in units of interaction strength
e*/ely = 11.2(B[T])Y/? meV as a function of ¢l at different
values of the external potential difference Ay at a magnetic field
of 20 T. The solid black line indicates the glz — oo asymptote
for Ap =
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of the uniform state interaction energy on global rotations
in LL pseudospin space:

2€&[z] _ &2 7

3
_ 4 + = 4 + 2 2 .
N, ol 2[lz()l 4|Z1| 2|zol* |z ] (14)

The factor in square brackets above is 1 — |z,]*/4, inde-
pendent of z; to quadratic order. Notice that because
A;; <0 for v = —1, 3, the absence of interaction contri-
butions to the gap implies that the fully spin-polarized state
is unstable. The ground state at these filling factors is
instead [14] an XY state with spontaneous phase order.

Intra-Landau-level cyclotron resonance.—Finally we
show that the octet QHF will exhibit unusual intra-LL
cyclotron modes at odd filling factors, focusing on the fully
polarized » = —3, 1 cases. The dynamical conductivity
O+ = 0y T ioy, can be evaluated using linear response
theory. The projection of the current operator, j; =
dH /dm,, onto the octet space can be expressed in terms
of LL pseudospins:

. fAB( h e )
=528 P+ S AN, 15
= ﬁle - (1) (15)

where the ac electric field E; = (1/¢)d A$*'/dt. The ac
conductivity (¢ = 1) is most simply evaluated by solving
the LL pseudospin equation of motion with the j - A
coupling included in the energy functional. We find that
N¢€AB 1

my; (0 * o)

o.(w) = (16)
In the absence of interactions the conductivity has intra-
octet peaks at the LL band-splitting frequency w;;, in
addition to inter-Landau-level peaks which do not appear
in the projected theory. Trigonal warping is expected [8] to
have little influence on electronic properties over the broad
field range over which ilz' > v3m. By performing explicit
numerical calculations on the four-band model of bilayer
graphene for typical bilayer quantum-Hall parameters, a
magnetic field strength of 10 T and Ay = 10 meV, we
have verified that both the position and the oscillator
strength of the intra-Landau-level resonance are shifted
by less than 2%.

These low-frequency absorption peaks should be visible
in microwave absorption experiments. The appearance of
tunable low-frequency peaks in o(w) is a surprise that
might be quite interesting from the point of view of the
quantum-Hall localization physics, even in systems for
which disorder dominates interactions. In normal
quantum-Hall systems, peaks in o+ appear near the char-
acteristic inter-Landau-level energy w. and the strong
localization physics which leads to flat broad quantum-
Hall plateaus occurs only in systems with w,7> 1. We
conjecture that one requirement for odd-integer filling

factor plateaus within the graphene bilayer octet is that
w7 > 1. Since w; is proportional to Ay, the strength of
the quantum-Hall effect can be tuned by a gate voltage
which does not influence either the system’s disorder or its
total carrier density.
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