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We address the role of correlations between spin and charge degrees of freedom on the dynamical

properties of ferromagnetic systems governed by the magnetic exchange interaction between itinerant and

localized spins. For this we introduce a general theory that treats quantum fluctuations beyond the random

phase approximation based on a correlation expansion of the Green’s function equations of motion. We

calculate the spin susceptibility, spin-wave excitation spectrum, and magnetization precession damping.

We find that correlations strongly affect the magnitude and carrier concentration dependence of the spin

stiffness and magnetization Gilbert damping.
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Introduction.—Semiconductors displaying carrier-
induced ferromagnetic order, such as Mn-doped III-V
semiconductors, manganites, chalcogenides, etc., have re-
ceived a lot of attention due to their combined magnetic
and semiconducting properties [1,2]. A strong response of
their magnetic properties to carrier density tuning via light,
electrical gates, or current [3–5] can lead to novel spin-
tronics applications [6] and multifunctional magnetic de-
vices combining information processing and storage on a
single chip. One of the challenges facing such magnetic
devices concerns the speed of the basic processing unit,
determined by the dynamics of the collective spin.

Two key parameters characterize the spin dynamics in
ferromagnets: the spin stiffness D and the Gilbert damping
coefficient �. D determines the long-wavelength spin-
wave excitation energies, !Q �DQ2, where Q is the

momentum, and other magnetic properties. D also sets an
upper limit to the ferromagnetic transition temperature:
Tc / D [1]. So far, the Tc of (Ga,Mn)As has increased
from �110 K [2] to �173 K [1,7]. It is important for
potential room temperature ferromagnetism to consider
the theoretical limits of Tc.

The Gilbert coefficient � characterizes the damping of
the magnetization precession described by the Landau-
Lifshitz-Gilbert (LLG) equation [1,8]. A microscopic ex-
pression can be obtained by relating the spin susceptibility
of the LLG equation to the Green’s function [9]

hhAii ¼ �i�ðtÞh½AðtÞ; S�Qð0Þ�i; (1)

with A ¼ Sþ�Q, S
þ ¼ Sx þ iSy. h� � �i denotes the average

over a grand canonical ensemble and SQ ¼
1=

ffiffiffiffi
N

p P
jSje

�iQRj , where Sj are spins localized at N ran-

domly distributed positions Rj. The microscopic origin of

� is still not fully understood [9]. A mean-field calculation
of the magnetization damping due to the interplay between
spin-spin interactions and carrier spin dephasing was de-
veloped in Refs. [9,10]. The magnetization dynamics can

be probed with, e.g., ferromagnetic resonance [11] and
ultrafast magneto-optical pump-probe spectroscopy ex-
periments [5,12–14]. The interpretation of such experi-
ments requires a better theoretical understanding of
dynamical magnetic properties.
In this Letter we discuss the effects of spin-charge

correlations, due to the p-d exchange coupling of local
and itinerant spins, on the spin stiffness and Gilbert damp-
ing coefficient. We describe quantum fluctuations beyond
the random phase approximation (RPA) [15,16] with a
correlation expansion [17] of higher Green’s functions
and a 1=S expansion of the spin self-energy. To Oð1=S2Þ,
we obtain a strong enhancement, as compared to the RPA,
of the spin stiffness and the magnetization damping and a
different dependence on carrier concentration.
Equations of motion.—The magnetic properties can be

described by the Hamiltonian [1]H ¼ HMF þHcorr, where

the mean-field Hamiltonian HMF ¼ P
kn"kna

y
knakn de-

scribes valence holes created by aykn, where k is the
momentum, n is the band index, and "kn the band disper-
sion in the presence of the mean field created by the
magnetic exchange interaction [16]. The Mn impurities
act as acceptors, creating a hole Fermi sea with concentra-
tion ch, and also provide S ¼ 5=2 local spins.

Hcorr ¼ �c
X
q

�Szq�s
z�q þ �c

2

X
q

ð�Sþq �s��q þ H:c:Þ;

(2)

where�� 50–150 meVnm3 in (III,Mn)V semiconductors
[1] is the magnetic exchange interaction. c is the Mn spin

concentration and sq ¼ 1=
ffiffiffiffi
N

p P
nn0k�nn0a

y
kþqnakn0 the

hole spin operator. �A ¼ A� hAi describes the quantum
fluctuations of A. The ground state and thermodynamic
properties of (III,Mn)V semiconductors in the metallic
regime (ch � 1020 cm�3) are described to first approxima-
tion by the mean field virtual crystal approximation, HMF,
justified for S ! 1 [1]. Most sensitive to the quantum
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fluctuations induced by Hcorr are the dynamical properties. References [9,15] treated quantum effects to Oð1=SÞ (RPA).
Here we study correlations that first arise at Oð1=S2Þ. By choosing the z axis parallel to the ground state local spin S, we
have S� ¼ 0 and Sz ¼ S. The mean hole spin s is antiparallel to S, s� ¼ 0 [1].

The spin Green’s function is given by the equation

@thhSþ�Qii ¼ �2iS�ðtÞ þ �chhðs� S�QÞþii � i�hhsþ�Qii þ
�c

N

X
kpnn0

hhð�nn0 � �Sp�k�QÞþ�½ayknapn0 �ii; (3)

where � ¼ �cS is the mean-field spin-flip energy gap and s ¼ 1=N
P

kn�nnfkn is the ground state hole spin. fkn ¼
hayknakni is the hole population. The first two terms on the right-hand side (rhs) describes the mean-field precession of the
Mn spin around the mean hole spin. The third term on the rhs describes the RPA coupling to the itinerant hole spin [10],
while the last term is due to the correlations. The hole spin dynamics is described by

ði@t � "kn0 þ "k�QnÞhhayk�Q"ak#ii ¼
�c

2
ffiffiffiffi
N

p
�
ðfk�Qn � fkn0 ÞhhSþ�Qii þ

X
qm

hhð�n0m � �SqÞ�½ayk�Qnakþqm�ii

�X
qm

hhð�mn ��SqÞ�½ayk�Q�qmakn0 �ii
�
: (4)

The first term on the rhs gives the RPA contribution [10],
while the last two terms describe correlations.

The correlation contributions to Eqs. (3) and (4) are
determined by the dynamics of the interactions be-
tween a carrier excitation and a local spin fluctu-
ation. This dynamics is described by Green’s functions

hh�Sp�k�Q�½ayknapn0 �ii, whose equations of motion

couple to higher Green’s functions, hhSayaayaii and
hhSSayaii, describing dynamics of three elementary exci-
tations. To truncate the infinite hierarchy, we apply a
correlation expansion [17] and decompose hhSayaayaii
into all possible products of the form hayaayaihhSii, hSi�
hayaihhayaii, hayaihh�S�½aya�ii, and hSihhayaayaiic,
where hhayaayaiic is obtained after subtracting all uncor-
related contributions, hayaihhayaii, from hhayaayaii (we
include all permutations of momentum and band indices)
[18]. Similarly, we decompose hhSSayaii into products of
the form hSSihhayaii, hSihayaihhSii, hSihh�S�½aya�ii, and
hayaihh�S�Sii. This corresponds to decomposing all op-
erators A into average and quantum fluctuation parts and
neglecting products of three fluctuations. We thus describe
all correlations between any two spin and charge excita-
tions and neglect correlations among three or more ele-
mentary excitations [which contribute to Oð1=S3Þ] [18]. In
the case of ferromagnetic �, as in the manganites, we
recover the variational results of Ref. [19] and thus obtain
very good agreement with exact diagonalization results
while reproducing exactly solvable limits (one electron,
half filling, and atomic limits; see Refs. [18,19]).

When treating correlations in the realistic (III,Mn)V
system, the numerical solution of the above closed system
of equations of motion is complicated by the coupling of
many momenta and bands and by unsettled issues regard-
ing the role on the dynamical and magnetic anisotropy
properties of impurity bands, strain, localized states, and
sp-d hybridization [1,20–23]. In the simpler RPA case,
which neglects inelastic effects, a six-band effective mass

approximation [16] revealed an order of magnitude en-
hancement of D. The single-band RPA model [15] also
predicts maximum D at very small hole concentrations,
while in the six-band model D increases and then saturates
with hole doping. Here we illustrate the main qualitative
features due to ubiquitous correlations important in differ-
ent ferromagnets [19,24] by adopting the single-band
Hamiltonian [15]. We then discuss the role of the multi-
band structure of (III,Mn)V semiconductors by using a
heavy and light hole band model.
In the case of two bands of spin- " and spin- # states [15],

we obtain by Fourier transformation

hhSþ�Qii! ¼ � 2S

!þ �þ�RPAðQ; !Þ þ �corrðQ; !Þ ; (5)

where � ¼ �cs gives the energy splitting of the local spin
levels. �RPA is the RPA self-energy [15,16].

�corr ¼ �c

2N

X
kp

�
ðGpk" þ FpkÞ

!þ "k � "kþQ

!þ "k � "kþQ þ�þ i�

� ðGpk# � FpkÞ
!þ "p�Q � "p

!þ "p�Q � "p þ �þ i�

�
(6)

is the correlated contribution, where

G� ¼ hhSþ�½ay�a��ii
hhSþii ; F ¼ hh�Szay" a#ii

hhSþii : (7)

�� 10–100 meV is the hole spin dephasing rate [25].
Similar to Ref. [10] and the Lindblad method calculation
of Ref. [14], we describe such elastic effects by substitut-
ing the spin-flip excitation energy � by �þ i�. We ob-
tained G and F by solving the corresponding equations to
lowest order in 1=S, with �S kept constant, which gives
�corr to Oð1=S2Þ. More details will be presented elsewhere
[18].
Results.—First we study the spin stiffness D ¼ DRPA þ

Dcorrþ þDcorr� . The RPA contribution DRPA reproduces
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Ref. [15]. The correlated contributions Dcorrþ > 0 and
Dcorr� < 0 were obtained to Oð1=S2Þ from Eq. (6) [18]:

Dcorr� ¼ � @
2

2mhS
2N2

X
kp

�
fk#ð1� fp#Þ"pðp̂ � Q̂Þ2

"p � "k

þ fk"ð1� fp"Þ"kðk̂ � Q̂Þ2
"p � "k

�
; (8)

Dcorrþ ¼ @
2

2mhS
2N2

X
kp

fk#ð1�fp"Þ½"kðk̂ �Q̂Þ2þ"pðp̂ �Q̂Þ2�

�
�

2

"p�"k
þ 1

"p�"kþ�
� �

ð"p�"kÞ2
�
; (9)

where Q̂, k̂, and p̂ denote the unit vectors.
For ferromagnetic interaction, as in the manganites

[19,24], the Mn and carrier spins align in parallel. The
Hartree-Fock is then the state of maximum spin and an
exact eigenstate of the many-body Hamiltonian (Nagaoka
state). For antiferromagnetic �, as in (III,Mn)V semicon-
ductors, the ground state carrier spin is antiparallel to the
Mn spin and can increase via the scattering of a spin- # hole
to an empty spin- " state (which decreases Sz by 1). Such
quantum fluctuations give rise to Dcorrþ , Eq. (9), which
vanishes for fk# ¼ 0. Dcorr� comes from magnon scattering

accompanied by the creation of a Fermi sea pair. In the case
of a spin- " Fermi sea, Eq. (8) recovers the results of
Refs. [19,24].

We evaluated Eqs. (8) and (9) for zero temperature after
introducing an upper energy cutoff corresponding to the
Debye momentum, k3D ¼ 6�2c, that ensures the correct
number of magnetic ion degrees of freedom [15].
Figures 1(a) and 1(b) show the dependence of D on hole
doping, characterized by p ¼ ch=c, for two couplings �,
while Figs. 1(c) and 1(d) show its dependence on � for two
dopings p. Figure 1 also compares our full result, D, with

DRPA and DRPA þDcorr� . It is clear that the correlations
beyond RPA have a pronounced effect on the spin stiffness,
and therefore on Tc / D [1,7] and other magnetic proper-
ties. Similar to the manganites [19,24], Dcorr� < 0 destabil-
izes the ferromagnetic phase. However, Dcorrþ strongly
enhances D as compared to DRPA [15] and also changes
its p dependence.
The ferromagnetic order and Tc values observed in (III,

Mn)V semiconductors cannot be explained with the single-
band RPA approximation [15], which predicts a small D
that decreases with increasing p. Figure 1 shows that the
correlations change these RPA results in a profound way.
Even within the single-band model, the correlations
strongly enhance D and change its p dependence: D now
increases with p. Within the RPA, such behavior can be
obtained only by including multiple valence bands [16]. As
discussed, e.g., in Refs. [1,7], the main band structure
effects can be understood by considering two bands of
heavy (mhh ¼ 0:5me) and light (mlh ¼ 0:086me) holes.
D is dominated and enhanced by the more dispersive light
hole band. On the other hand, the heavily populated heavy
hole states dominate the static properties and EF. By
adopting such a two-band model, we obtain the results of
Figs. 2(a) and 2(b). The main difference from Fig. 1 is the
order of magnitude enhancement of all contributions, due
to mlh=mhh ¼ 0:17. Importantly, the differences between
D andDRPA remain strong. Regarding the upper limit of Tc

due to collective effects, we note from Ref. [7] that it is
proportional to D and the mean-field Mn spin. We thus
expect an enhancement, as compared to the RPA result,
comparable to the difference between D and DRPA.
The doping dependence of D mainly comes from its

dependence on EF, shown in Figs. 2(c) and 2(d), which
differs strongly from the RPA result. Even though the two-
band model captures these differences, it fails to describe
accurately the dependence of EF on p, determined by the
successive population of multiple anisotropic bands.
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FIG. 1 (color online). Spin stiffness D as function of hole
doping and interaction strength for the single-band model. c ¼
1 nm�3, � ¼ 0, D0 ¼ @

2=2mhh, mhh ¼ 0:5me.
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FIG. 2 (color online). Spin stiffness D for the parameters of
Fig. 1. (a),(b) Two-band model, (c),(d) dependence on the Fermi
energy within the single-band model.
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Furthermore, the spin-orbit interaction reduces the hole
spin matrix elements [22]. For example, j�þ

nn0 j2 is maxi-

mum when the band states are also spin eigenstates. The
spin-orbit interaction mixes the spin- " and spin- # states
and reduces j�þ

nn0 j2. From Eq. (3) we see that the devi-

ations from the mean-field result are determined by the

coupling to Green’s functions hh�þ
nn0�½aynan0 �ii (RPA),

hh�Sz�þ
nn0�½aynan0 �ii (correction to RPA due to Sz fluctua-

tions leading to Dcorrþ > 0), and hh�Sþ�z
nn0�½aynan0 �ii

(magnon-Fermi sea pair scattering leading to Dcorr� < 0).
Both the RPA and the correlation contribution arising from
�Sz are proportional to �þ

nn0 . Our main result, i.e., the

relative importance of the correlation as compared to the
RPA contribution, should thus also hold in the realistic
system. The full solution will be pursued elsewhere.

We now turn to the Gilbert damping coefficient, � ¼
2S=! ImhhSþ0 ii�1 at ! ! 0 [9]. We obtain to Oð1=S2Þ that
� ¼ �RPA þ �corr, where �RPA recovers the mean-field
result of Refs. [9,10] and predicts a linear dependence on
the hole doping p, while

�corr ¼ �2

2N2S2
X
kp

Im

�
fk#ð1� fp"Þ
�þ i�

�
1

"p � "k � �

þ 1

"p � "k þ�þ i�

��
(10)

arises from the carrier spin-flip quantum fluctuations.
Figure 3 compares � with the RPA result as a function of
p. The correlations enhance � and lead to a nonlinear
dependence on p, which suggests the possibility of con-
trolling the magnetization relaxation by tuning the hole
density. A nonlinear dependence of � on photoexcitation
intensity was reported in Ref. [13] (see also Refs. [12,21]).

We conclude that spin-charge correlations play an im-
portant role on the dynamical properties of ferromagnetic
semiconductors. For quantitative statements, they must be
addressed together with the band structure effects particu-
lar to the individual systems. The correlations studied here
should play an important role in the ultrafast magnetization
dynamics observed with pump-probe magneto-optical
spectroscopy [12–14,21,22].
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FIG. 3 (color online). Gilbert damping as function of hole
doping for different interactions �. c ¼ 1 nm�3, � ¼ 20 meV.
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