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Muon spin rotation experiments were performed on the pnictide high temperature superconductor

SmFeAsO1�xFx with x ¼ 0:18 and 0.3. We observed an unusual enhancement of slow spin fluctuations in

the vicinity of the superconducting transition which suggests that the spin fluctuations contribute to the

formation of an unconventional superconducting state. An estimate of the in-plane penetration depth

�abð0Þ ¼ 190ð5Þ nm was obtained, which confirms that the pnictide superconductors obey an Uemura-

style relationship between Tc and �abð0Þ�2.
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The recent discovery of high temperature superconduc-
tivity (HTSC) in the layered tetragonal pnictide compound
RFeAsO1�xFx (R ¼ La, Nd, Pr, Gd, and Sm) with critical
temperatures Tc above 50 K came as a considerable sur-
prise [1–3]. This is the first family of non-copper-oxide-
based layered superconductors with Tc exceeding 40 K and
raises the expectation that even higher Tc values can be
achieved. This discovery also gives rise to the speculation
that a common pairing mechanism is responsible for HTSC
in cuprates and pnictides.

At first glance, the pnictides appear rather different from
the cuprates. Band structure calculations suggest that they
are multiband superconductors with up to five FeAs-
related bands crossing the Fermi level [4–6] as opposed
to the cuprates which have only one relevant Cuð3dx2�y2ÞO
band. A more complex exchange interaction is suggested
since, besides the indirect Feð3dÞ-Asð4pÞ hybridization, a
sizable direct Feð3dÞ-Feð3dÞ overlap has been predicted
[5,6] as well as significant frustration [7]. Furthermore,
electron doping gives the highest Tc here, compared to
hole doping for the cuprates.

Nevertheless, there are also some striking similarities,
such as HTSC emerging on doping away from a magneti-
cally ordered parent compound [8]. Neutron measurements
on undoped LaFeAsO have revealed commensurate spin-
density wave (SDW) order of the Fe moments below TN ¼
135 K with amplitude 0:35�B [9], a result confirmed by
muon spin rotation (�SR) and Mössbauer [10]. Resistivity
measurements exhibit an anomaly near TSDW in LaFeAsO
and SmFeAsO which has been tracked as a function of F
doping. These measurements suggest that the magnetic
order is rapidly suppressed upon doping and that the maxi-

mum Tc is achieved just as static magnetism disappears
[8]. Recent neutron measurements on superconducting
(SC) samples confirm this conjecture since they could
not detect any magnetic order [9]. Thus an important issue
is whether weak, slowly fluctuating or disordered magne-
tism persists in these superconductors.
In this Letter we report a�SR study which provides new

insight into the magnetic properties of this superconductor.
Two polycrystalline samples with nominal compositions of
x ¼ 0:18 and 0.3 were synthesized by conventional solid
state reaction methods [2,8]. All (the main) peaks in stan-
dard powder x-ray diffraction patterns could be indexed to
the tetragonal ZrCuSiAs-type structure for x ¼ 0:18 (x ¼
0:3), as previously reported [2,8]. Measurements of the dc
resistivity and magnetization were made to determine Tc

ð�TcÞ ¼ 45ð3Þ and 45(4) K for x ¼ 0:18 and 0.3 corre-
sponding to the midpoint (10%–90%width) of the resistive
and the diamagnetic transitions.
The �SR experiments were performed at the EMU,

MuSR, and ARGUS instruments of the ISIS facility,
Rutherford Appleton Laboratory, UK, which provides
pulsed beams of 100% spin polarized muons. �SR mea-
sures the time evolution of the spin polarization of the
implanted muon ensemble using the time-resolved asym-
metry AðtÞ of muon decay positrons. The technique [11,12]
is well suited to studies of magnetic and SC materials as it
allows a microscopic determination of the internal field
distribution and gives direct access to the volume fractions
of SC and magnetic phases [12].
Figure 1(a) shows representative spectra of the zero-field

(ZF) �SR measurements at three different temperatures
for x ¼ 0:18. The relatively fast relaxation of AðtÞ, which
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persists even at 200 K, provides clear evidence for the
presence of sizable electronic magnetic moments. We
find that these spectra are well described with a single
stretched exponential relaxation function of the form
AðtÞ ¼ Að0ÞGðtÞ where the spin polarization function is
GðtÞ ¼ exp½�ð�ZFtÞ��. This is illustrated in the inset of
Fig. 1(a) which shows that the data follow straight lines on
a log-log plot of �t= lnðGðtÞÞ versus t [13]. The tempera-
ture dependences of the relaxation rate �ZF and the expo-
nent � are shown in Figs. 1(b) and 1(c), respectively.
Above 100 K the relaxation is exponential with � � 1
and �ZF is only weakly temperature dependent. Below
100 K the value of �ZF exhibits a significant increase
followed by a saturation below 30 K with a low tempera-
ture value of �ZF � 1:2 �s�1. At the same time � de-
creases continuously towards � � 0:5. Notably, the
biggest changes occur in the vicinity of the SC transition
at Tc ¼ 45ð3Þ K, as shown by the vertical dashed line in
Figs. 1(b) and 1(c). The inset of Fig. 1(b) shows corre-

sponding data for the x ¼ 0:3 sample where �ZF is reduced
but exhibits a similar temperature dependence.
In order to distinguish between static and dynamic con-

tributions, a longitudinal field (LF) scan was performed at
60 K (Fig. 2). We observe an abrupt transition in the
longitudinal relaxation rate �LF at around 40 G but sub-
sequent increases in LF produce no further significant
change. This unusual behavior cannot be accounted for
by a simple decoupling model for purely static or dynamic
spins (dashed line in Fig. 2) which would predict �LF /
B�2 above some critical field (corresponding either to the
internal field in the static case or �=�� in the dynamic case,

where � is the fluctuation rate).
Two potential sources for the muon relaxation are the

lanthanide moments in the SmO layers and magnetic fluc-
tuations originating from spin correlations in the FeAs
layers. The strong doping dependence of �ZF [Fig. 1(b)]
demonstrates clearly that the observed magnetism cannot
be explained solely in terms of weakly coupled Sm mo-
ments. The data for T > Tc naturally separates into two
components: T-independent and T-dependent, as indicated
in Fig. 1(b). The latter component has an activation energy
in the range of 10–20 meV, a typical scale for lanthanide
moment fluctuations [14]. The amplitude corresponds to
the nonquenched component seen in LF and we ascribe this
component to Sm moments which are fluctuating rapidly
due to crystal field excitations [14]. The temperature-
independent component which is quenched in 40 G at
60 K can be identified with low energy spin fluctuations
associated with the FeAs layer.
Although the high temperature relaxation is simple ex-

ponential and can therefore be associated with a single,
dominant fluctuation rate, cooling through Tc results in a
reduction in �, signifying a range of fluctuation rates and/
or local field amplitudes. This indicates that the spin dy-
namics at low temperature becomes substantially more
complex. Below Tc, the activated behavior ceases and
�ZF saturates, demonstrating that an additional relaxation
channel becomes dominant. Although relaxation with � ¼
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FIG. 2. Field dependence of �LF at 60 K for the x ¼ 0:18
sample. The dashed line shows a simulation assuming decou-
pling from a simple static or dynamic local field distribution (see
text). The dotted line is a guide to the eye and illustrates the more
abrupt transition which is actually observed.

t ( s)

5

10

15

20

25
A

(t
)

(%
) T = 7 K

T = 50 K
T = 100 K

0 2 4 6 8 10 122

(a)

0.0

0.5

1.0

Z
F

(
s-1

)

Tc (b)

(c)

10 30 100
T (K)

0.5

1.0

Tc

-t
/l

n(
G

)

t ( s)µ

T (K)

Z
F

(
s-1

)

0.04

0.16

10 100

T (K)
10 100

1.0

0.5
Tc

FIG. 1 (color online). (a) Example ZF-�SR spectra for x ¼
0:18. Inset: log-log plot of the polarization function GðtÞ [13].
(b) Temperature evolution of �ZF for x ¼ 0:18. Inset: Corre-
sponding data for x ¼ 0:3. (c) Shape parameter � for x ¼ 0:18.
Inset: Corresponding data for x ¼ 0:3. In (b) the solid line is the
sum of a temperature-independent component (horizontal
dashed line) and an activated component with an activation
energy of 13 meV. Dotted lines are a guide to the eye.
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0:5 can be suggestive of glassy behavior or static disorder,
it is unlikely to be the case here. Since it is known that the
Sm moments order antiferromagnetically (AFM) below
�3–4 K [15] (and see below), a static disordered Sm state
at higher temperature is precluded. While it is possible that
static Fe moments could develop in this temperature re-
gime, the lack of change in �ZF in the region below 30 K
where � is changing continuously makes this interpreta-
tion unlikely. We can also discard any interpretation of our
data which involves a small fraction of ordered spins, since
the observed relaxation corresponds to the behavior of the
overwhelming bulk of the sample across the entire tem-
perature range; thus the role of any purported minority
phase is not directly probed in these experiments.

Our data therefore suggest that the onset of SC is ac-
companied or slightly preceded by the enhancement of
slow spin fluctuations which originate (at least partially)
in the FeAs layers. This raises the question of whether this
coincidence is accidental or signifies that the spin fluctua-
tions are playing an active role in the SC pairing mecha-
nism. The former scenario is not supported by the similar
temperature dependences of the spin fluctuations for the
x ¼ 0:18 and x ¼ 0:3 samples (despite the different abso-
lute values). Furthermore, the latter scenario agrees with
the finding that Tc for the Sm compounds are almost twice
those of the La ones, whose spin fluctuations appear to be
considerably weaker or possibly even absent [16,17]. It is
also supported by theoretical calculations which show that
spin fluctuations emerging in the proximity of an AFM or
SDW state can mediate or at least significantly enhance a
singlet SC state [18,19]. Notably, the spin fluctuations
enhance only unconventional order parameters whereas
they suppress conventional ones.

One might even be tempted to speculate about an un-
conventional SC state with spin triplet Cooper pairs, simi-
lar to ðU;ThÞBe13, UPt3 [20], and Sr2RuO4 [21] where the
breaking of time-reversal symmetry yields spontaneous
supercurrents that create internal magnetic fields below
Tc. However, these magnetic fields should be static rather
than dynamic. Also the Sm moment would have to play an
important role in this unconventional SC state since no
corresponding increase in the ZF relaxation rate has been
observed in the related La compound [16,17].

Certainly, our observations call for further investigations
to clarify the role of slow spin fluctuations in the SC
pairing mechanism and to explore whether the enhanced
spin fluctuations in the Sm compound as compared to the
La one are brought about by the coupling to the lanthanide
moments or rather by the related structural changes [1,2].

Unconventional superconductivity is also supported by
our transverse field (TF)�SRmeasurements which yield a
low temperature value of the in-plane magnetic penetration
depth �abð0Þ that falls close to the so-called Uemura line of
the cuprate HTSC [22]. The TF-�SR spectra for Bapp ¼
100 G were well described with a sum of two Gaussian
functions using the form

AðtÞ ¼ X

i¼1;2

Aið0Þ cosð��BitÞ exp
�
�
�
�TF

i t

2

�
2
�
; (1)

where Ai, Bi, and �TF
i correspond to the amplitude, the

local magnetic field at the muon site, and the relaxation
rate, respectively. The second weakly damped component
reflects the small background from muons not stopping in
the sample. The first, dominant component is due to the
sample, and its temperature dependence is shown in Fig. 3.
A sharp rise of �TF [Fig. 3(a)] is seen below Tc which
exceeds that which would be expected from the ZF data;
this additional contribution reflects the formation of the
vortex lattice. This interpretation is confirmed by an ob-
served diamagnetic shift of �13 G [plotted in Fig. 3(b)]
which also occurs at Tc. The additional steep rise of �TF

below 4 K [see inset of Fig. 3(a)] likely represents addi-
tional local field broadening due to the ordering of the Sm
moments.
Notably, on cooling towards Tc there is a gradual onset

of a diamagnetic shift already at about 70 K, which is
detailed in the inset of Fig. 3(b). As was already noted
above, this could be an indication for a precursor SC state
with a transition temperature higher than the bulk Tc or the
onset of SC fluctuations above Tc. However, at present we
cannot rule out the possibility that the slowing down of the
spin fluctuations leads to this reduction of the local field. In
any case, the sharp onset of the diamagnetic shift at Tc and
the corresponding increase in �TF allow us to provide an
estimate of the in-plane magnetic penetration depth.
Allowing for an additional root-exponential damping in

10

20

30

B
rm

s
(G

)

1

2 T
F

(
s -1)

0 50 100 150 200 250

T (K)

-15

-10

-5

0

B
-

B
ap

p
(G

)

(b)

(a)

50 100 150 200 250
T (K)

-1

0

B
-

B
ap

p
(G

)

1 3 10 30 100
T (K)

0

20

40

B
rm

s
(G

)

0

1

2

3 T
F

(
s -1)

FIG. 3. (a) The main component of �TF (ARGUS spectrome-
ter). The inset shows additional data below 4 K (MuSR spec-
trometer), which reveals a steep increase of �TF, likely due to the
ordering of the Sm moments. The dashed lines illustrate the
respective contributions from the SC vortex lattice and the Sm
ordering. (b) The diamagnetic shift due to the development of
the SC state. Inset: A detail of the behavior above Tc. Dotted
lines are guides to the eye.
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the dominant term of (1) to take account of the contribution
to the relaxation from magnetic fluctuations (which is
known from the ZF measurements), the SC vortex con-
tribution to the total linewidth BSC

rms is obtained. This is
plotted in Fig. 4(a) against applied field at 10 K and from
this data we derive �ab ¼ 190ð5Þ nm. This estimate is
derived from fitting to the numerical results of a recent
detailed Ginzburg-Landau vortex lattice calculation [23],
taking a polycrystalline average for our powder sample in
the high anisotropy limit, under the assumption that the
length scales � and � diverge following 1= cos� as the field
orientation approaches the plane at � ¼ 0.

Since the estimate is made at 0:2Tc, it should provide a
good account of �abð0Þ, assuming a two-fluid type of
saturating temperature dependence. Note that we are un-
able to establish whether any additional gap-node related
linear term might be present at low temperatures due to the
extra relaxation contribution below 4 K. Our value of �ab is
shorter than those found for LaFeAsO1�xFx by Luetkens
et al. [254(2) nm for x ¼ 0:1 and 364(8) nm for x ¼ 0:07
[16,24]], reflecting the higher Tc of our compound and
hence larger superfluid stiffness (proportional to ��2

ab ).

Figure 4(b) shows the Uemura plot [22] for the pnictide
superconductors measured to date by�SR. Apparently the
overall trend lies closer to that of the hole-doped than the
electron-doped cuprates.

In conclusion, the �SR results on polycrystalline
SmFeAsO1�xFx with x ¼ 0:18 and 0.3 provide clear evi-

dence for the coexistence and interplay of superconductiv-
ity and dynamic magnetic correlations. The magnetic
correlations exhibit a complex temperature dependence,
and a significant contribution of magnetic fluctuations to
the enhanced Tc is suggested. From TF measurements we
obtained an estimate of the in-plane magnetic penetration
depth of �ab ¼ 190ð5Þ nm, which comes rather close to the
Uemura line of the hole-doped cuprates.
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Note added.—Since submission of this Letter we learned

of Ref. [26] which interprets the ZF-�SR of SmFeAsO0:85

with two exponential components and attributes the relaxa-
tion solely to weakly coupled Sm moments. Such an inter-
pretation is inconsistent with our relaxation data and its LF
and doping dependences.
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