
Giant Proximity Effect in a Phase-Fluctuating Superconductor

Dominic Marchand, Lucian Covaci, Mona Berciu, and Marcel Franz

Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
(Received 29 October 2007; published 28 August 2008)

When a tunneling barrier between two superconductors is formed by a normal material that would be a

superconductor in the absence of phase fluctuations, the resulting Josephson effect can undergo an

enormous enhancement. We establish this novel proximity effect by a general argument as well as a

numerical simulation and argue that it may underlie recent experimental observations of the giant

proximity effect between two cuprate superconductors separated by a barrier made of the same material

rendered normal by severe underdoping.
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The Josephson effect [1]—the ability of Cooper pairs to
coherently tunnel between two nearby superconductors—
represents one of the most spectacular manifestations of
the electron pairing paradigm that underlies the BCS the-
ory of superconductivity. If the barrier between the super-
conductors is formed by an insulating material (or a
vacuum) the tunneling current is controlled by the overlap
between the Cooper pair wave functions that extend into
the empty space between the superconductors. When the
barrier is made out of a normal metal (SNS tunneling) then
the supercurrent can be much enhanced due to the prox-
imity effect [2]. In essence, local superconducting order is
induced inside the barrier which significantly enhances the
distance over which pairs can tunnel.

The proximity effect is well understood and documented
in conventional superconductors [3,4]. In high-Tc cuprates
there now exists compelling experimental evidence for an
anomalously large proximity effect when the barrier is
formed by an underdoped cuprate that would be in its
normal state if studied in isolation [5–10]. The critical
currents of such junctions have been reported to exceed
the expectations based on conventional theories by more
than 2 orders of magnitude. While the early results raised
some suspicion of being contaminated by various extrinsic
effects, the most recent data [10] on very high quality films
under closely controlled conditions leave little doubt that
the effect is intrinsic and that it represents a qualitatively
new type of Josephson tunneling. Previous theoretical
attempts to elucidate this effect were mostly based on
modeling inhomogeneous barriers using conventional
mean-field methods [11–13], but they could not account
for purely intrinsic effects.

In this Letter we formulate a theory of a new type of
tunneling between two superconductors that occurs when
the barrier is formed by an unconventional normal metal.
The latter is characterized as a superconductor that has lost
its phase rigidity due to phase fluctuations. According to
one school of thought [14–19] it is precisely this type of an
unconventional normal metal that appears in the pseudo-
gap state of cuprate superconductors [20] used as a barrier
in the above experiments [8–10]. Recent experimental in-

sights into the pseudogap phase [21–25] seem to confirm
the existence of vortices well above the critical tempera-
ture, supporting the phase fluctuation paradigm and calling
for a description of the Josephson tunneling processes in
these exotic phases.
In the following, we demonstrate, by a general argument

and by extensive numerical simulations, that the Josephson
tunneling in this situation is greatly enhanced compared to
the SNS. We show that in such an SPS junction (where
‘‘P’’ stands for ‘‘pseudogap’’) the dependence of the junc-
tion critical current on both the temperature and the barrier
thickness is qualitatively different from the SNS case. The
most striking difference is that in one particular regime we
find logarithmic dependence of the junction critical tem-
perature Teff on the junction width d. At T < Teff this
allows the pairs to tunnel over vastly longer distances in
accord with experiment.
The standard model describing a phase-fluctuating su-

perconductor is defined by the XY Hamiltonian

HXY ¼ � 1

2

X
hiji

Jij cosð’i � ’jÞ: (1)

Here ’i represents the phase of the superconducting order
parameter on the site ri of a D-dimensional square lattice
and Jij are Josephson couplings between the neighboring

sites ri and rj. Classical [26,27] as well as the quantum

[28–31] versions of this model have been employed pre-
viously to study phase fluctuations in cuprates. Although
quantum fluctuations may be important in cuprates, to
demonstrate the effect in the simplest possible setting,
we focus here on the effect of classical thermal
fluctuations.
In the spatially uniform situation, Jij ¼ J, it is well

known that the XY model undergoes a superconductor to
normal transition at the critical temperature

Tc ¼ cJ; (2)

where we took kB ¼ 1. In two dimensions the transition is
of the Kosterlitz-Thouless (KT) type [32], driven by the
unbinding of vortex-antivortex pairs. The standard KT
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argument applied to the continuum XY model gives c ¼
�=2 while numerical simulations of the lattice model (1)
yield c ’ 0:93 [33]. In order to model the proximity effect
we consider the above XY Hamiltonian in the J � J0 � J
geometry illustrated in Fig. 1(a): two superconductors
characterized by Jij ¼ J separated by a strip of width d

and Jij ¼ J0 < J. This configuration, at temperatures T0
c <

T < Tc, behaves as a Josephson junction similar to the one
studied in Ref. [10] since, according to Eq. (2), the strip
should be in the normal state in this regime.

In this configuration the proximity of bulk superconduc-
tors will prevent vortex-antivortex pairs in the strip from
unbinding at T0

c, leading to the anomalously large prox-
imity effect. In order to see this consider a single pair of
size r � d inside the strip. The phase gradient is largely
confined to within the strip, Fig. 1(a), and thus the energy
of such a pair will be EvaðrÞ ’ J0 lnðrÞ. Once r exceeds d,
however, the phase gradient necessarily spills into the
regions outside the strip, Fig. 1(b), and the pair becomes
energetically more costly. In the limit r � d we expect
EvaðrÞ to approach J lnðrÞ and indeed this is borne out in a
more detailed calculation summarized below. Since the KT
transition occurs when r ! 1, i.e., vortices become free,
we may expect that the transition temperature in this
geometry will be controlled by J and not by J0. The critical
temperature and the critical current of such an SPS junc-
tion will thus be significantly enhanced.

Results presented in Fig. 1 are based on the well-known
mapping [34] of the continuum version of Hamiltonian (1),

HXY ¼ 1

2

Z
dr2JðrÞðr’Þ2; (3)

onto a 2D problem in electrostatics of point charges (rep-
resenting vortices) in the dielectric medium characterized
by a dielectric constant �ðrÞ � JðrÞ�1. The phase configu-
rations (related to the electric field vector) and the energy
of the vortex-antivortex configuration can be obtained by
the method of image charges. For a vortex-antivortex pair
lying on the symmetry axis of the strip the energy acquires
a simple form,

EvaðrÞ=J0 ¼ lnrþ X1
j¼1

�j lnð1þ r2=j2Þ; (4)

with � ¼ ðJ � J0Þ=ðJ þ J0Þ and rmeasured in units of d. It
is easy to verify that Eq. (4) indeed implies the asymptotic
behavior stated above and shown in Fig. 1(c).
We now proceed to estimate the vortex unbinding tem-

perature Teff [32] in a system consisting of two super-
conductors characterized by J and J0. For simplicity we
consider the disk geometry sketched in Fig. 1(d). The key
advantage of this geometry is that, using the continuum
Hamiltonian (3), we can calculate the energy of a vortex
placed at the center of the disk exactly. By symmetry it is
easy to see that jr’j ¼ 1=r and it follows that the vortex
energy is

Ev ¼ �½J0 lnðd=�Þ þ J lnðL=dÞ�; (5)

where � is the vortex core cutoff and d, L are the inner and
outer radii, respectively. We shall henceforth assume that
(5) remains approximately valid even when the vortex is
placed slightly off center. The entropy of the single-vortex
configuration can be estimated as Sv ’ lnðL=�Þ2 and the
vortex unbinding temperature is then obtained by examin-
ing the free energy of the system F ¼ Ev � TSv. This
yields

Teff ’ �

2
J

�
1�

�
1� J0

J

�
lnðd=�Þ
lnðL=�Þ

�
: (6)

The above formula is physically reasonable: it interpolates
smoothly between the limiting cases d ! � and d ! L,
giving Tc ¼ ð�=2ÞJ and ð�=2ÞJ0 respectively, in accord
with Eq. (2). On the other hand we do not expect Eq. (6) to
remain accurate for J0 � J. Indeed J0 ! 0 constitutes a
singular limit: here we expect Teff ¼ Tc if d ¼ 0, whereas
Teff ¼ 0 for all finite d. This discontinuous behavior is
unlike the linear decrease of Teff from Tc to T0

c ¼ 0 pre-
dicted by Eq. (6) when J0 ! 0.
The key implication of the above estimate is that the

critical temperature should scale with the ratio of loga-
rithms of d and L. Such an unusual scaling is a direct
consequence of the nonlocal nature of the phase field
generated by a vortex and is much more general than the
crude treatment presented above may suggest. Specifically,
we shall establish below by detailed numerical simulations
that the logarithmic scaling (6) also applies to the strip
geometry of Fig. 1(a), and thus by extension, to the experi-
mental setup of Refs. [8–10]. Since the critical current of a

FIG. 1 (color online). Superconducting phase distribution in
the J � J0 � J junction with J0=J ¼ 0:3 and a vortex-antivortex
pair with size (a) r ¼ 0:3d and (b) r ¼ d. (c) Energy of the
vortex-antivortex pair, Eq. (4), in units of J as a function of the
pair size in units of d, for J0=J ¼ 0:2. (d) Disk geometry used to
estimate the vortex unbinding temperature.
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junction also scales with its Tc this establishes the adver-
tised anomalous behavior of the SPS junction.

In order to validate the above considerations we now
investigate the proximity effect systematically using nu-
merical simulation. We employ a version of the
Monte Carlo method in which we first map the XY
Hamiltonian (1) onto a bond-current model [35] using a
high-temperature expansion and then deploy the ‘‘worm
algorithm’’ [36], with only minor complications due to the
inhomogeneity of Jij. This method is well suited for our

needs as it allows for efficient evaluation of the main
quantity of interest, the helicity modulus � and is known
to circumvent problems due to critical slowing down near
the transition. � measures the response of the system to an
externally imposed phase twist and its relevance follows
from the fact that it is proportional to the critical current jc
the system can sustain before going normal [34].

To check the validity of our algorithm, we first studied
the homogeneous system with d ¼ 0 in 2D. Our results in
this limit are in excellent agreement with those of Ref. [33]
and, as L gets large, exhibit a clear approach towards the
universal jump in �ðTÞ expected near the KT transition.

We consider next the 2D strip geometry illustrated in
Fig. 1(a), for which we fix J0=J ¼ 0:4 and L ¼ 128 while
varying the size of the junction d (here and hereafter we
measure d and L in units of �). The helicity modulus in the
direction perpendicular to the junction is calculated as a
function of temperature for a wide range of d. This is
shown in Fig. 2(a). We observe a smooth evolution of
�ðTÞ between the two homogeneous geometries (d ¼ 0
to d ¼ L). An interesting aspect of this data is the behavior
of�ðTÞ at d � L: the helicity modulus (and thus jc) of the
junction remains large at temperatures far exceeding T0

c.
This is quite striking when one recalls that in this geometry
all the supercurrent must pass through the region of small
coupling J0 which would be in the normal state at T > T0

c if
studied in isolation. We may thus conclude that in the
experimentally relevant regime d � L the junction critical
current is controlled largely by the properties of the leads,

as expected on the basis of heuristic arguments presented
above.
Similar behavior occurs in 3D as illustrated in Fig. 2(b).

We note that in 3D there is no universal jump at Tc; instead
our simulation recovers the expected continuous behavior
characterized by the 3D XY exponent � ’ 0:667. We note
that both 2D and 3D results in Fig. 2 exhibit the character-
istic linear T dependence in the vicinity of the junction
critical temperature that is ubiquitous in the experimental
data [10].
In order to quantify the proximity effect we consider the

junction critical temperature Teff defined in 2D by the
intersection of �ðTÞ with the line with slope equal to
2=� [33]. In Fig. 3(a) the logarithmic dependence of Teff

on x ¼ lnd= lnL expected from Eq. (6) is seen to hold for
small x. The slope increases with decreasing J0=J, in
accord with Eq. (6), although it is quantitatively somewhat
larger than predicted, presumably due to the differences
between the strip geometry and the cylindrical geometry
used to derive Eq. (6). For x ! 1, Teff tends to T0

c, as
expected. In the limit J0=J ! 0 we see a pronounced
departure from the linear variation between Tc and T0

c

predicted by Eq. (6). This is consistent with our expecta-
tion that Eq. (6) fails to describe this singular limit.
Moreover, our numerical results demonstrate how the dis-
continuous jump of Teff from Tc to T0

c ¼ 0, expected for
J0 ¼ 0, is approached continuously as J0 ! 0.
We interpret the above numerical data as being in quali-

tative agreement with our heuristic picture of the giant
proximity effect through a phase-fluctuating superconduc-
tor in two dimensions. Notably, the agreement is excellent
in the experimentally relevant regime of the narrow barrier
x � 1.
In real superconductors the logarithmic interaction be-

tween vortices, which gives rise to the above phenomena, is
cut off exponentially at length scales exceeding the mag-
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FIG. 2 (color online). Helicity modulus as a function of tem-
perature of the (a) 2D system with L ¼ 128 and (b) the 3D
system with L ¼ 32 and different sizes of the barrier d with
J0=J ¼ 0:4.
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FIG. 3 (color online). (a) Junction critical temperature Teff as a
function of x ¼ lnd= lnL for three different ratios J0=J ¼ 0:7,
0.4 and 0.1 in two dimensions. Finite size effects prevent these
points from falling exactly on a smooth curve. The arrows
indicate the expected T0

c values, reached when d ! L. Both d
and L are measured in units of �. (b) Comparison between the
SPS model and the conventional SNS proximity effect.

PRL 101, 097004 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

29 AUGUST 2008

097004-3



netic penetration depth �, or the effective ‘‘Pearl’’ length
�eff ¼ �2=h in a 2D film of thickness h. When modeling a
real superconductor one should thus replace L in all for-
mulas by� ¼ maxð�; �effÞ except for very small junctions
(L <�) in which case Teff will depend on the size of the
macroscopic leads L as indicated by Eq. (6). In cuprates
� � �=� ’ 102 � 104 and the barrier thickness d is typi-
cally of the order of 10–200 Å. Thus, the junctions of
Ref. [10] are in the limit of relatively small x ¼
lnðd=�Þ= ln� and our considerations should apply.

In three dimensions, pointlike vortices are replaced by
vortex loops. These lead to similar nonlocal phase gra-
dients as vortex-antivortex pairs in two dimensions and it is
thus to be expected that the enhancement of the proximity
effect will persist in 3D SPS junctions. This is indeed
confirmed by Fig. 2(b). Within the error bars our 3D
numerical data hint at logarithmic dependence of Teff on
d similar to that in Fig. 3(a), but we do not currently have a
simple heuristic picture for this dependence. A detailed
account of our analysis will be given elsewhere [37].

Reference [8] describes a Bi2Sr2CaCu2O8þ�=
Bi2þzSr2�x�zLaxCuOy=Bi2Sr2CaCu2O8þ� junction 123 Å

thick, with Teff ’ 50 K, over 3 times higher than T0
c ’

15 K of the Bi2þzSr2�x�zLaxCuOy film. In the standard

theory of SNS tunneling [2–4] the critical current

jc � e�d=�n : (7)

In the 2D clean limit �n ¼ �n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T0
c=ðT � T0

cÞ
p

with �n0 ¼
1
2�ð�0=kBTcÞ and � is the BCS coherence length of the

order of tens of Å in cuprates. One thus expects essentially
no supercurrent to flow through the above junction at
temperatures significantly above T0

c according to the con-
ventional theory. In the SPS scenario advocated in this
Letter such enhancement is easily attainable due to the
weak logarithmic dependence of Teff on the barrier thick-
ness d. Physically, this key difference stems from our
assumption, rooted in extensive experimental evidence
[14,21–25], that underdoped cuprates above Tc behave as
phase-disordered superconductors. To further exemplify
this contrast we compare in Fig. 3(b) the jc dependence
on the junction width obtained from our model with the
conventional SNS theory Eq. (7). We observe that for
reasonable values of the BCS ratio (�0=kBTc � 4–8 in
cuprates) the SPS model implies vastly larger critical
current than the conventional SNS theory. To the extent
that our predictions can be systematically verified, experi-
mental observation of the giant proximity effect can be
viewed as a smoking gun evidence for the phase fluctuation
paradigm.

Finally, it is worth pointing out that our results could
also be relevant to suitably fabricated Josephson junction
arrays as well as junctions of thin ferromagnetic films with
easy-plane anisotropy and different exchange integrals
(and thus, different Curie temperatures). These are also
described by the XY model and our results apply un-
changed, except that in a ferromagnet the helicity modulus

is replaced by the spin stiffness. Experimental measure-
ments of its dependence on the thickness d of the inside
layer provide another way to verify our predictions.
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