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We find that in two dimensions wires can crumple into different morphologies and present the

associated morphological phase diagram. Our results are based on experiments with different metallic

wires and confirmed by numerical simulations using a discrete element model. We show that during

crumpling, the number of loops increases according to a power law with different exponents in each

morphology. Furthermore, we observe a power law divergence of the structure’s bulk stiffness similar to

what is observed in forced crumpling of membranes.
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Crumpling is omnipresent in nature, occurring on all
length scales, ranging from blood cells that crumple in
order to pass through capillaries up to the formation of
the Swiss Alps. The crumpling of spatially extended mem-
branes became a challenging research topic of strong in-
terest over the past decades. Thorough research, experi-
mental, theoretical, and numerical, was conducted to dis-
cover basic statistical properties [1,2] like the scaling of
strength and energy [3–5] and landscapes in phase space
[6,7] of crumpled structures. Surprisingly, the question of
packing of wires or polymer chains in two dimensions has
attracted far less attention until recently [8,9].

In this Letter, we present the first morphological phase
diagram of crumpled wires in two dimensions. Metal wires
with different material behavior are crumpled by injecting
them into a circular cavity from opposing sides. To study
the material dependence of the morphology, we keep the
general geometric setup fixed, instead of allowing, e.g., for
the injection angle or cavity shape to be varied like in [8].
Our experiments show that plastic yielding and friction are
the essential parameters determining the morphology. We
find excellent agreement with computer simulations and
construct a full morphological phase diagram. We further
analyze the morphologies by means of the number of loops
as function of the packing density, which exhibits a power
law behavior with different exponents for each morphol-
ogy. Finally, we show that the stiffness of the crumpled
structures follows a power law increase in the packing
fraction, similar to observations on membranes [4,10].
The stiffness, however, does not fully diverge due to the
finite wire thickness, resulting in jammed states where
percolating force chains are formed by contacting wire
segments.

In our experiments a wire is pushed from opposing sides
into a metallic cylindrical cavity of radius r ¼ 10 cm
having a width of one wire diameter d with a transparent
acrylic glass top to allow for observation. The setup is
based on experiments by Donato et al. [8], with the crucial
difference that we are pushing the wire in a controlled way
by two sets of counterrotating rollers driven by large
forces. With this setup we crumple wires of steel (d ¼

0:8 mm) and brazing solder (d ¼ 1 mm)—materials with
differing mechanical properties.
We model the wire by point masses, connected by tensile

springs. Bending stiffness is considered by rotational
springs attached to each node. We choose Hook’s law

Fi ¼ �k1ð�0 � �iÞ and Mi ¼ �k2�i (1)

with the rest length �0, the angle �i at node i, and the two
proportionality constants k1 and k2 for the tensile forces
and bending moments, respectively. From the continuum
limit [11] it follows that k1 ¼ EA=�0 and k2 ¼ EI=�0 with
Young’s modulus E, wire cross section A, and second
moment of inertia I. For the numerical results we fixed
E ¼ 1275, corresponding to k1 ¼ 1000 and k2 ¼ 60 for a
circular wire with diameter d ¼ 1 and �0 ¼ 1. We use the
dimensionless ratio f ¼ r=d of cavity radius to wire di-
ameter to specify the effective system size.
We describe plastic deformation of wires in the rota-

tional springs, using a simple linear flow rule with yield
threshold moment of k2�� and slope sk2 (0 � s � 1).
Therefore Mi in Eq. (1) holds for � � ��, while for � >
�� M ¼ �k2�� � ð� � ��Þsk2. Unloading is always
along the elastic path with slope k2. This is a linear
approximation to the bending stress-strain relation, as
can be found, for example, in Ref. [12]. In the following,
we will use the discretization-independent yield curvature
�� ¼ ��=�0 as plasticity parameter.
For a realistic simulation considering friction at wire-

wire and wall-wire contacts proved to be crucial. We there-
fore implemented a simple Coulomb’s friction law Fst �
�stFN with friction coefficient �st and force normal to the
contacts FN . Above �stFN , dynamic friction sets in with
Fd ¼ �dFN , opposed to the relative tangential movement
of contacts. Below a threshold velocity vth, static friction
sets in again [13]. For numerical reasons, we add a small
viscous damping on the translational and rotational degrees
of freedom.
We follow the time evolution of the system by integrat-

ing the equations of motion of all nodes. We choose f ¼
100 to match the experimental setup. During the simulation
we push new elements into the cavity, starting from an
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initially cavity-spanning straight wire. The simulation
stops when a sudden increase of the injection force ap-
pears. At this point, we consider the system as jammed.
The experiments end when the resistance of the crumpled
structure becomes so large that the rollers are not able to
push more wire into the cavity.

The crumpling starts with an initial buckling of the
cavity-spanning wire in the upward or downward direction.
The symmetry of the wire is broken by small deviations
from the ideal positions. This solution is stable until the
wire contacts the cavity wall for the first time. Depending
on yield threshold �� and static wire friction coefficient
�st, three different morphologies can be distinguished.

(1) With high cavity friction �st a morphology emerges
that we call classic, since it corresponds to the observation
of Ref. [8]. As can be seen in Fig. 1 (left), the wire
immediately forms cascades of loops of decreasing sizes.
Since wire is inserted on both sides, strong symmetry is
present. In simulations of purely elastic wires, this sym-
metry is preserved until the structure is jammed, while
experimentally it is broken when plastic flow sets in for
high packing densities. Cascading loops and strong sym-
metry are the two criteria for this classical morphology.

(2) Elastic wires with low�st form a spiral pattern, with
the turning direction chosen spontaneously [see Fig. 1
(middle)] comparable to Ref. [9]. The spiral winds up
when more wire is inserted. Simulations reveal that this
pattern is maintained for purely elastic wires until the
entire cavity is filled. In the experiment, however, a critical
packing density might exist where plastic deformations set
in. In that case, loop cascades appear on the left and right
side of the spiral; i.e., a mixing of the classic and the spiral
morphology can be observed.

(3) Typical for the plastic morphology is the loss of
symmetry. This third morphology arises for highly plastic
wires [Fig. 1 (right)]. It starts similarly as the classic one by
forming cascades of loops. In contrast to the classical

morphology the axial symmetry is soon broken and large
rearrangements of existing structures occur. Such reorder-
ing is observed on length scales ranging from a single loop
up to the rearrangements of entire cascades. As a conse-
quence, higher packing densities can be obtained than for
the other morphologies. Note that the plastic phase is
defined by the disorder and not by the material. Plastic
and classic morphologies are separated by comparing the
spatial distribution of curvature, which is concentrated near
the cavity border for the classic phase (cf. the location of
loops in Fig. 1) [14].
Experimentally, we produced the classic, spiral, and

plastic morphologies using steel wire without and with
silicon oil or brazing solder, each one represented by one
point in the phase space. We investigated this phase space
numerically in detail by changing yield curvature �� from
0 to 0.06 and friction �st from 0 to 0.6, resulting in the
morphological phase diagram of Fig. 2. Simulations are
limited to f ¼ 50, to be able to present a precise phase
diagram in reasonable CPU time; however, preliminary
results for f ¼ 100 do not show significant differences.
For �� ¼ 0 we allow plastic deformation right from the
start, while �� ¼ �=�0 represents the elastic case. For
�st > 0:6 and �� > 0:06 we observed no further influence
on the morphology. For all simulations k1 ¼ 1000, k2 ¼
60, and s ¼ 0:05 were kept constant. We find that a direct
transition from the spiral to the classic phase is not possible
and a reentrant phenomenon is observed at 0:2<�st <
0:35 with increasing ��. For an explanation, consider the
two requirements for building the symmetric structures of
the classic phase: First, friction stabilizes the structures
during packing. With �st between 0.08 and 0.18, this
constraint is not sufficient and the loops rotate and rear-
range. Consequently, the plastic phase emerges between
the spiral and classic one. However, also plastic deforma-
tion has a stabilizing effect by dissipating stored energy,
limiting the system’s capability to rearrange. To find the

FIG. 1. Crumpled wires in a circular
cavity. Experiments (top row) and simu-
lations (bottom row) showing the three
different morphologies. Materials are
steel wire (1.5125) d ¼ 0:8 mm without
(left) and with (middle) silicon oil and
brazing solder (Sn99Cu1) d ¼ 1 mm
(right). Simulation parameters are f ¼
100, �� ¼ 0:04, �st ¼ 5, s ¼ 0:08 for
the classic (left), �� ¼ �=2, �st ¼ 0,
s ¼ 0:04 for the spiral (middle), and
�� ¼ 0:02, �st ¼ 5, s ¼ 0:04 for the
plastic (right) morphology. Simulation
snapshots are shown for similar packing
densities as in the respective experi-
ments.
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classic phase at 0:2<�st < 0:35, small �� is required to
prevent rearrangements, along with friction. For too small
��, no cavity-spanning loops form and the classic phase is
unreachable. Consequently, the classic phase requires a
minimal �� � 0:027, leading to the observed reentrant
phenomenon.

The morphology of the crumpled wires can be quantified
by the number of loops, the distribution of loop sizes and
contact points, or the fractal dimension of the structure. In
this Letter we focus on the scaling of the number of loops
Nl as a function of the dimensionless packing density � ¼
dL=ð�r2Þ, where L is the inserted wire length. A loop is
defined as an area that is surrounded by a wire segment
with only one inner contact of inward wire surfaces. In
experiments, the number of loops was counted and the total
wire length was obtained by standard image analysis of
digital images that were taken during the experiment.
Donato et al. [8] report a pronounced shoulder for �<
0:032, a power law asymptotic dependence Nl ��	 with
	 ¼ 1:8� 0:2 and a maximum packing density of � ¼
0:14� 0:006. The results of our simulations and experi-
ments are given in Fig. 3. We find exponent 	 to vary
slightly for different morphologies. For the classical mor-
phology we measure 	 ¼ 1:75� 0:03, for the plastic mor-
phology 	 ¼ 1:85� 0:04 and for the spiral 	 ¼ 0 up to
� ¼ 1, as only two loops are present. Also, a universal
maximum packing density could not be observed.

For a macroscopic analysis of the packing process, we
measured the stiffness of the crumpled structures as func-
tion of the packing density � via the force acting on the
nodes in the insertion channels. As before, the simulation is
stopped when the system is jammed, i.e., when straight
parallel force lines from contacting wire segments exist
between the injection channels (see Fig. 4).

For computational reasons, these measurements were
performed for different system sizes up to f ¼ 35.
Parameters were chosen as �� ¼ 0:08, s ¼ 0:06, and

�st ¼ 5, corresponding to the classical phase. We find
the force to scale as a power law of the form

F / ð�c ��Þ
 (2)

with exponent 
 ¼ �1:43� 0:02. In Fig. 5, �c ¼ 0:46�
0:01, which is substantially smaller than the theoretical
limit �c ¼ 1. For the purely elastic case of the classic
morphology, we find 
 ¼ �2:05� 0:02 and�c ¼ 0:54�
0:02 (data not shown). Note that simulations for the spiral

1

2

5

10

2

5

10
2

2

nu
m

be
r 

of
 lo

op
s 

N
l

10 2 5 10
2

normalized wire length L/L0

.

plastic
=1.85

classic
=1.75

steel
tin

FIG. 3. Scaling of the number of loops for the classic (f ¼ 50)
and plastic (f ¼ 100) morphologies. To compare different sys-
tems sizes, L=L0 was used as packing ratio (total inserted wire
length L and initial one L0 ¼ 2R). The number of loops for both
morphologies follows the power law Nl � �	.

FIG. 4. The jammed classic morphology. Force chains formed
by contacts are clearly visible. Contact forces are represented by
the thickness of the line segments, while the gray scale of the
wire backbone represents its local elastic bending energy. Since
this system includes plastic deformations, highest curvature does
not necessarily imply highest bending energy.

FIG. 2. Morphological phase diagram of the spiral, plastic, and
classic morphologies obtained numerically for f ¼ 50, where
the control parameters are the static wire friction �st and the
elastic yield curvature ��. Each point is averaged over 9 realiza-
tions.
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phase exhibit �c � 1 with a deviant force scaling relation,
in excellent agreement with the analytical results [9].

In this Letter we presented three morphologies into
which wires crumple inside a circular cavity. Using a
discrete element model that incorporates plastic deforma-
tion and static friction, we showed that plasticity and
friction are the two essential parameters determining the
morphology. Three different experimentally found mor-
phologies could be reproduced in silico by matching wire
materials and friction, and the associated phase diagram
was constructed. We showed the existence of a reentrant
phenomenon due to two mechanisms for the stabilization
of structures, friction and plastic deformation. The
crumpled structures were analyzed by counting the number
of loops as function of the packing density, showing a
power law behavior for experiments and simulations. The
insertion force, which is difficult to obtain in experiments,
was determined numerically and exhibits a power law
divergence with critical packing fractions substantially
lower than 1. The same power law divergence (with �c �
0:75, 
 � �1:85 [10,15]) was also found for the forced
crumpling of membranes in three dimensions, although the
divergence in membranes comes from kinks [4,16]. In
wires, on the other hand, we have no kinks and it is most
probably a consequence of the decreasing size of the newly
generated loops.

The presented work demonstrated the crucial role of
plasticity and friction in crumpling processes, with its

characteristic morphology. It is natural to generalize this
work to the forced crumpling of membranes or the packing
of DNA into viral capsids [17–19]. Macroscopically, the
role of the system size is not fully understood and certainly
needs clarification, also with regard to the morphological
phase diagram. Furthermore, it is still an open question
how other geometrical parameters such as the injection
angle and cavity shape influence the morphological phase
diagram.
This work was supported by Grant No. TH-06 07-3 of
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FIG. 5. The insertion force F as function of �. Simulation
parameters are k1 ¼ 1000, k2 ¼ 60, f ¼ 25, �� ¼ 0:08, �st ¼
5, s ¼ 0:05. The best fit for the divergence is a power law F /
ð�c ��Þ
 with 
 ¼ �1:43 (solid line).
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