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Spectral Incoherent Solitons: A Localized Soliton Behavior in the Frequency Domain
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We show both theoretically and experimentally in an optical fiber system that a noninstantaneous
nonlinear environment supports the existence of spectral incoherent solitons. Contrary to conventional
solitons, spectral incoherent solitons do not exhibit a confinement in the spatiotemporal domain, but
exclusively in the frequency domain. The theory reveals that the causality condition inherent to the
nonlinear response function is the key property underlying the existence of spectral incoherent solitons.
These solitons constitute nonequilibrium stable states of the incoherent field and are shown to be robust

with respect to binary collisions.
DOI: 10.1103/PhysRevLett.101.093901

For a long time solitons have been considered as being
inherently coherent localized structures and the discovery
of incoherent solitons in optics has represented a signifi-
cant advance in nonlinear science [1]. The incoherent soli-
ton consists of a phenomenon of self-trapping of incoher-
ent light in a nonlinear medium characterized by a re-
sponse time 7 much greater than the time correlation of
the fields, 7>> ¢, [1,2]. The remarkable simplicity of the
experiments realized in photorefractive materials allowed
for a fruitful investigation of the dynamics of incoherent
nonlinear fields [3]. It is worth noting that incoherent soli-
tons [4] and remarkable dynamical features inherent to the
incoherent nature of the fields [5,6] have also been recently
investigated in instantaneous response nonlinear media.

As occurs for standard coherent solitons, incoherent
solitons are characterized by a confinement of the field in
the spatial or in the temporal domain [1-4]. We introduce
here a novel type of incoherent solitons that are neither
spatial nor temporal; i.e., the incoherent field does not
exhibit any confinement in the spatiotemporal domain;
however, the uncorrelated frequency components that con-
stitute the incoherent field exhibit a localized soliton be-
havior in the frequency domain.

The existence of the spectral incoherent soliton relies on
the property of causality of the nonlinear response function
x (7). According to linear response theory [7], the causality
condition imposes restrictions on the Fourier transform of
the response function ¥(w), so that the real and imaginary
parts of ¥(w) = yr(w) + iy;(w) turn out to be related by
the Kramers-Kronig relations [8]. Our theory reveals that
the existence of a nonvanishing imaginary part of ¥(w) is
the essential property underlying the existence of spectral
incoherent solitons. Indeed, the function ¥y(w) is known to
play the role of a “gain spectrum” for the field, which is
responsible for an energy transfer from the high- to the
low-frequency components of the incoherent field. Our
analysis remarkably reveals that, after a transient, the
averaged spectrum self-organizes in the form of a spectral
soliton, which is shown to propagate without distortion in
frequency space towards the low-frequency components.
Moreover, the study of soliton collisions reveals that they

0031-9007/08/101(9)/093901(4)

093901-1

PACS numbers: 42.65.Tg, 05.45.—a, 42.81.Dp

exhibit a quasielastic interaction, thus confirming their
particlelike nature.

We provide experimental evidence of the existence of
spectral incoherent solitons by exploiting the natural
Raman effect of conventional silica optical fibers. The
Raman response function is known to exhibit complex
dynamics because of the amorphous nature of silica glass
[3,9]. However, by showing the existence of Raman spec-
tral solitons, our analysis reveals that these incoherent
structures are robust and can even be sustained by compli-
cated response functions y(z).

The existence of the spectral incoherent soliton may ap-
pear quite counterintuitive. Indeed, according to the kinetic
wave theory, an incoherent field is expected to exhibit an ir-
reversible thermalization process characterized by a H the-
orem of entropy growth [5,6,10]. Conversely, the causality
property inherent to the response function y(r) leads to a
kinetic equation that exhibits the important property of
conserving the nonequilibrium entropy. The theory then
reveals that the spectral incoherent soliton constitutes a
nonstationary and nonequilibrium stable state of the field, a
feature of natural relevance for the important issue of fully
developed turbulence. Furthermore, a kinetic equation of
the same form was considered in the context of plasma
physics to study Langmuir waves or stimulated Compton
scattering [11], and in biological systems in the framework
of the Lotka-Volterra equation [12]. In addition to random
nonlinear wave systems, spectral solitons may thus find
applications in the study of biochemical reactions, or in the
dynamics of interacting biological species.

Let us consider the nonlinear Schrodinger (NLS) equa-
tion that takes into account a finite-time nonlinear response
function (1),

o= =B+ i [ O e, 1)

where the causality condition imposes y(7) = 0 for r < 0.
The function x(z) is normalized in such a way that [ ydt =
1, so that in the limit of an instantaneous response [y(f) =
8(1), 8(r) being the Dirac function] Eq. (1) recovers the
standard NLS equation. As usual in optics, the propagation
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distance z plays the role of an evolution ““‘time” variable
[3,8]. The parameter y denotes the nonlinear coefficient
and B = (9%k/dw?)/2 the dispersion parameter [3]. In the
following, we consider the highly incoherent regime of
interaction in which € =L,;/L,; <1, where L, =
t2/1B] and L,; = 1/¥{|¢|?) refer to the characteristic dis-
persion and nonlinear length, respectively.

A physical insight into the spectral incoherent soliton
may be obtained by integrating numerically the NLS
Eq. (1). The initial condition refers to a random field ¢(z =
0, ¢) that we assume to be of zero mean and to obey a
stationary statistics. In this example we consider the de-
tailed expression of the Raman response function involved

in the experiment, xo(¢)=f,h,(t)+ f,h,(), where
h(t) = 7(17% + 73 2) exp(—t/my)sint/ 1)), hy(t) =
(27, — t)exp(—t/1,) /73, with 7, =12 fs, 7, =32 fs,

7, =96 fs and f;, = 0.21 (f, + f, = 1) [3,9]. As will
be discussed later, the results we are going to present are
general and do not depend on this specific form of x(z). A
typical evolution of an initial Gaussian spectrum super-
posed on a small-amplitude background noise is illustrated
in Fig. 1(a). The simulation remarkably reveals that the
spectrum splits into three components: two-soliton-like
spectra (S, S,) emerge from the initial condition, while
the remaining energy is characterized by a small-amplitude
field, which essentially evolves linearly without any sig-
nificant frequency shift. The two-soliton-like spectra are
shown to propagate with a constant velocity towards the
low-frequency components. They are characterized by an
effective width (A wg,) of the same order than the spectral

5000

6000

-2000 0 2000

@

4000

FIG. 1 (color online). Numerical simulations of the NLS
Eq. (1) showing the evolution of the stochastic, i.e., nonaver-
aged, spectrum of the incoherent field [|l/}|2(z, w)] in logarithmic
scale. (a) An initial spectrum splits into two solitary-waves (S,
S,) and a radiationlike part; (b) the collision between such
solitons reveals a quasielastic interaction [7; = (| BILDY? =
0.8 ps, L, = 24 m]. The inset in (a) shows the intensity distri-
bution 1(t) = ||*(z, ) associated to §; at z = 100L,,: the field
does not exhibit any temporal confinement. The inset in
(b) shows the spectrum in normal scale. The time is in units of
T4, @ in units of 7! and z in units of L.

bandwidth, Awy, ~ Aw, [see Fig. 2(a)]. Let us remark in
Fig. 1 that the high-amplitude (i.e., high-energy) soliton S
is narrower and faster than the small-amplitude (i.e., low-
energy) one S,. This property has been exploited to study
soliton collisions. The collision is characterized by a sud-
den transfer of energy that occurs from the high- to the
small-energy soliton: the slow soliton is accelerated while
the fast soliton is decelerated, thus revealing the existence
of a quasielastic soliton interaction [Fig. 1(b)].

We underline that these numerical simulations refer to a
single realization of the incoherent (stochastic) field .
Accordingly, the nonaveraged spectrum |i|2(z, ) illus-
trated in Fig. 1 is itself a stochastic function, which, by
nature, cannot describe a genuine soliton dynamics [see the
insets of Fig. 1(a) and 1(b)]. To reveal the underlying
deterministic soliton behavior, one has to resort to a statis-
tical description of the incoherent field based on an average
over the realizations ({-)). For this purpose, the equation
governing the evolution of the correlation function
B(z, 7) = ((z, t + 7/2)¢*(z, t — 7/2)) can be derived by
following the standard procedure based on the random-
phase approximation. This approximation is known to be
justified in the highly incoherent regime of interaction, € =
L,;/Ly < 1. In this regime the statistics of the field is
essentially Gaussian, so that the property of factorizability
of stochastic Gaussian fields may be exploited to achieve a
closure of the hierarchy of the moment’s equation [10]. We
follow the procedure outlined in Ref. [6], which yields
[13],
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FIG. 2 (color online). (a) Schematic illustration of the soliton
motion induced by the Raman spectral gain curve jy;(w).
Numerical simulations of the kinetic Eq. (2) showing the evo-
lution of the averaged spectrum n(z, w) of the incoherent field:
(b) soliton evolution, (c) splitting of an initial broad spectrum
into four solitons and a radiationlike part (logarithmic scale),
(d) binary soliton collision showing an almost elastic interaction
(logarithmic scale). The soliton evolution in (b) is a linear-scale
plot of the high-amplitude soliton shown in (d) [z is in units of
Ly, @ in units of 75'].
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i9,B(z7) = y ﬁ " X(O[BWOB(r — 1) — B*()B(r + 1)}dr,

where “B(r)” stands for “B(z, t)” in the integrand. By
Fourier transforming this equation, one obtains

2z 0) = Lz o) [ o — @nte @, @

where n(z, w) refers to the averaged spectrum of the
field [((z. )P (2, @2)) =n(z, @1)8(w; — w,), n(z, @) =
[B(z, w)exp(—iwt)dt]. Because x(1) is real yi(w) is an
odd function, which entails that Eq. (2) conserves the
number of quasiparticles N = [ ndw and the nonequilib-
rium entropy S = [log[n(z, w)]dw. This contrasts with
the fundamental H-theorem of entropy growth (dS/dz =
0) inherent to the kinetic wave theory [5,6,10]. Actually,
the conservation of entropy in Eq. (2) originates in the
causality property of the response function x(z). This
becomes apparent by remarking that Eq. (1) is almost
identical to the NLS equation governing field propagation
in nonlocal nonlinear media [3], provided one substitutes
the response function with the nonlocal potential [ y(r) —
V(x) and t — x]. The fundamental difference is that non-
local effects are not constrained by causality. The Fourier
transform V(k) results to be purely real and Eq. (2) reduces
to the trivial equation d,n(z, @) = 0. Actually, the kinetic
description of a nonlocal interaction requires a second-
order perturbation theory in € = L,/L,, [6]. The corre-
sponding kinetic equation exhibits the standard collision
term that describes the expected thermalization of the field
via a process of entropy production, dS/dz = 0. This
discussion reveals that (in the first-order approximation
in €) the causality property inherent to the response func-
tion x(z) prevents the field from reaching thermal
equilibrium.

The fact that Eq. (2) may exhibit solitary-wave solutions
may be anticipated by remarking that, as a result of the
convolution product, the spectral gain curve ¥j(w) ampli-
fies the front of the spectrum at the expense of its trailing
edge, thus leading to a global redshift of n(w) [see
Figs. 2(a) and 2(b)]. Actually, an equation of the form (2)
was considered in the context of plasma physics [11]. In
the limit Aw, > Aw,,, a Gaussian-shaped solitary-wave
solution was obtained through the approximation y;(w) o
. In the opposite limit, Aw;, < Aws, it was pointed out
that Eq. (2) reduces to a Korteg—de Vries—like equation
[11]. However, our numerical study of Eq. (2) reveals that,
as a rule, the width of the spontaneously generated soliton
is of the same order than the gain bandwidth, Awg, ~
Awy,, regardless of the details of the considered expres-
sion of ¥j(w). Precisely, we have found numerically stable
soliton solutions for various different forms of y;(w), e.g.,
the derivative of Gaussian or of Lorentzian functions. The
detailed shape of the soliton is shown to depend on the
considered expression of y;(w). For a given ¥;(w), the

same soliton solution may be spontaneously generated for
a large class of initial conditions n(z = 0, ®). Important to
note, a genuine propagation invariant solution requires a
constant small-amplitude noise background [n(w) — & as
|w| — *o0], otherwise the soliton undergoes a slow adia-
batic reshaping, so as to adapt its shape to the local value of
the noise background. The numerical simulations of
Eq. (2) reproduce the essential soliton properties antici-
pated through the analysis of the NLS Eq. (1) in Fig. 1. In
particular, an initial broad spectrum is shown to split into a
set of solitons and a radiationlike part [Fig. 2(c)], while the
study of two-soliton collisions confirms the existence of a
quasielastic soliton interaction [Fig. 2(d)].

The experiment has been realized in a silica optical fiber,
whose response function is known to include an electronic
quasi-instantaneous Kerr contribution and a molecular
Raman contribution, x,(#) = (1 — f)6(t) + frxo(t)
with fpr =~ 0.18 [3]. The numerical simulations of Eq. (1)
reveal that, in spite of its complexity, this response function
supports spectral incoherent solitons. Let us remark that,
consistently with Eq. (2), spectral incoherent solitons are
generated irrespective of the sign of the dispersion coeffi-
cient B [i.e., normal (8 > 0) or anomalous (8 < 0) disper-
sion], provided that € = L;/L, << 1. Conversely, for
L;~ L, and B <0, one recovers the quasicoherent re-
gime of interaction where the standard Raman self-
frequency-shift solitons are generated [3].

In our experiment we made use of a polarization main-
taining (PM) optical fiber so as to guarantee that light
propagates with a constant linear polarization. The inco-
herent wave was obtained from the amplified spontane-
ous emission (ASE) of a dye amplifier pumped by a
Q-switched frequency-doubled Nd:YAG laser emitting
5-ns pulses at a repetition rate of 25 Hz. A spectral width
as broad as Av ~ 20 THz was obtained by using a DCM/
SR640 dyes mixture. The central emission wavelength of
the incoherent source was close to 630 nm (i.e., vy =
475 THz). The concentration of each dye was properly
adjusted to obtain a spectrum as flat as possible over a
spectral range of the same order than the Raman spectral
bandwidth. Note that the pulse duration is much longer
than the typical coherence time ¢., so that the incoherent
source may be considered as a quasistationary statistical
source. At the output of the dye amplifier, a system of half-
wave plates and Glan polarizers was used to adjust the
optical power and to inject the polarized ASE beam along
one of the principal axes of the PM fiber.

We have first studied the evolution of the spectrum of the
incoherent wave as a function of the input peak power P for
different fiber lengths L [see Fig. 3(a)]. For each fiber
length the mean-frequency is continuously redshifted as
the power is increased. This behavior is in quantitative
agreement with the numerical simulations of Eq. (1)
[with x(r) = x.(), see Fig. 3(b)], in which spectral inco-
herent solitons have been clearly identified. This reveals
that the velocity of the soliton is not proportional to the
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FIG. 3. (a) Experimental evolution of the mean-frequency of

the spectrum of the incoherent wave vs the input peak power P
for different fiber lengths L. (b) Comparison between experiment
(circles) and numerical simulations of Eq. (1) (continuous line)
for L =300 m. (c) Experimental evolution of the mean-
frequency of the spectrum vs the effective length L.y for P =
8 W (diamonds), P = 14 W (circles), and corresponding nu-
merical simulations (d). The insets represent the respective
evolutions of the experimental (c) and theoretical (d) spectra:
initial spectrum and the spectrum after 300 m of propagation for
P=14W (8=0.03ps’/m, y = 0.05 W Im™1)

power. Next, we have studied incoherent light propagation
in several fiber lengths L. Figure 3(c) represents the evo-
lution of the mean-frequency vs the propagation distance
for two different input powers. To take into account linear
fiber losses (¢ = 2.3 km™!), we have represented the evo-
lution of the frequency shift in terms of the effective length,
defined as Loy = [1 — exp(—aL)]/a [3]. After a transient
stage, the frequency shift exhibits a monotonic variation
which is almost proportional to the propagation distance, in
agreement with the properties of the spectral incoherent
soliton [Figs. 1, 2, and 3(d)]. Note that the lines in
Figs. 3(c) and 3(d) exhibit a small curvature, a feature
that could be ascribed to the fact that the mean-frequency
has been calculated from the whole spectrum, and thus
includes the ‘“‘nonsolitonic radiationlike’’ part. This point
is illustrated in the inset of Fig. 3(c), which represents the
incoherent spectrum at the fiber input (dashed line) and
after 300 m of propagation (solid line). We clearly observe
the formation of a spectral peak that is continuously shifted
away from the radiationlike part of the spectrum.

In summary, we have reported theoretically and experi-
mentally incoherent structures whose soliton behavior
manifests itself exclusively in the frequency domain. The
spectral soliton is sustained by the combined effects of
dispersion and nonlinearity: in the absence of dispersion
the spectrum would be highly deformed, while in the
absence of nonlinearity the spectrum would not evolve at
all. These incoherent structures may thus be expected to
arise in any radiation-matter interaction whose finite-time

response could not be neglected. Spectral incoherent soli-
tons are also relevant to many branches of nonlinear phys-
ics owing to the universality of the NLS equation.
Furthermore, note that the discretized version of the kinetic
Eq. (2) takes the following form, d,n; = n;) ;x;n;, with
Xij = —xji- This equation recovers the structure of the
generalized Lotka-Volterra equation, which is known to
provide a generic description of biochemical population
dynamics [12], n;(¢) referring to the temporal evolution of
the population of the jth species (or the jth chemical
reacting component). In this context, the spectral soliton
manifests itself as a dynamical birth-death process, in
which novel species are continuously regenerated in the
front of the soliton, while they disappear at its trailing
edge; i.e., the populations of new species grow up absorb-
ing species previously generated until they are aborbed in
turn by the newly generated species.
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