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Measurements with photodetectors are naturally described in the infinite dimensional Fock space of one
or several modes. For some measurements, a model has been postulated which describes the full
measurement as a composition of a mapping (squashing) of the signal into a small dimensional Hilbert
space followed by a specified target measurement. We present a formalism to investigate whether a given
measurement pair of full and target measurements can be connected by a squashing model. We show that a
measurement used in the Bennett-Brassard 1984 (BB84) protocol does allow a squashing description,
although the corresponding six-state protocol measurement does not. As a result, security proofs for the
BB84 protocol can be based on the assumption that the eavesdropper forwards at most one photon, while
the same does not hold for the six-state protocol.
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Detection devices play an important role in quantum
communication protocols. In the theoretic design of these
protocols, signals are often thought of as qubits, and there-
fore low-dimensional Hilbert spaces only need to be con-
sidered. In optical implementations, the signals are
realized by photons, which are naturally described by the
Fock spaces of spatio-temporal modes. Our goal is to
determine how one can reduce the large-dimensional de-
scription of optical measurements of these modes to a
particular lower-dimensional one. Our insight will provide
a powerful tool to ease the analysis of optical implementa-
tions of quantum communication protocols.

A typical measurement in quantum communication is
the one used in the Bennett-Brassard 1984 (BB84) quan-
tum key distribution (QKD) protocol [1], in which the
incoming light is split by a polarizing beam splitter, which
can be oriented either along the horizontal/vertical basis
(labeled as z) or in the �45=�45 degree basis (labeled as
x). The signal is then sent to a threshold detector which
cannot resolve the number of photons by which they are
triggered. This measurement can be described as a single
Positive Operator Valued Measure (POVM) with noncom-
muting POVM elements if the basis choice is done at
random with some fixed probabilities. It has been postu-
lated that there exists a squashing model for this setup,
which first maps (squashes) the incoming signal to a one-
photon polarization Hilbert space, followed by the same
BB84 measurement. A recent important security proof [2]
is based on this detector property.

In this Letter, we define a squashing model and lay out a
framework to determine whether a given detection device
allows a squashing model. We then prove for the BB84
measurement that a squashing model exists. Surprisingly,
the corresponding measurement in the six-state protocol
[3,4] does not admit a squashing model. More details of
these results will be presented in a future paper.

First, we will define a squashing model more precisely.
A full measurement, FM, described by a POVM with
elements F�i�M defined on a large (possibly infinite dimen-
sional) Hilbert space M is said to admit a squashing model
with respect to a target measurement, FQ, with POVM

elements F�i�Q on a smaller dimensional Hilbert space Q if
a squashing map � from M to Q exists, such that the
composition of the squashing map and the measurement
on Q is statistically equivalent to the measurement on
system M. In other words, the two measurement models
in Fig. 1 must act identically for any input signal.

The measurement description via the POVM elements
F�i�M and F�i�Q need not correspond to the basic events by the
detectors, such as the pattern of detector clicks, but can
involve some post-processing. For example, in the optical
implementation of the BB84 measurement above, double
clicks occur if both detectors fire due to a multiphoton
input, while after squashing, at most one photon is con-
tained in the signal and so no double clicks can occur.
Therefore, to match the number of possible outcomes, we
can choose to map double clicks of the full measurement
randomly to the single-click event of one of the two
detectors. This mapping has been introduced before in
the security analysis of QKD [5,6].

In the context of QKD, one typically assumes the cali-
brated device scenario in which the detection device is
trusted and known. Then, if a squash model exists, the
corresponding squashing map can become part of the
eavesdropper’s (Eve’s) attack. Therefore we can assume,
without loss of generality, that Eve sends a signal in the
Hilbert space Q to the receiver, Bob. As an example, many
security proofs assume that Eve forwards polarized single
photons (qubits) or vacuum states to the receiver. If a given
full optical implementation of a polarization measurement
has a squash model connecting it to the single photon
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polarization measurement assumed in the security proof,
then this proof is also valid for the full optical implemen-
tation of the protocol. Additionally, squashing the detec-
tion to a finite-dimensional system makes it possible to use
the fast converging de Finetti theorems of Renner [7] on
the level of the squashed system, even if the original full
system is infinite dimensional.

Notice that the existence of a squashing model for a
given full measurement FM and target measurement FQ is
the question of the existence of a particular squasher con-
necting these measurements. Any valid squasher must be a
trace-preserving completely positive map, �, and can be
described by a set of Kraus operators fAkg, which obeyP
kA
y
k Ak � 1M. The statistical equivalence of the full mea-

surement FM and concatenation of � and FQ can be stated
formally as

 Tr ��inF
�i�
M ��Tr����in�F

�i�
Q ��Tr

�X
k

Ak�inA
y
kF
�i�
Q

�

�Tr
�
�in

X
k

AykF
�i�
Q Ak

�
�Tr��in�y�F�i�Q �� (1)

where �in is the density matrix of the incoming signal. We
require Eqn. (1) to hold for all incoming signals �in, which
is fulfilled if and only if

 F�i�M � �y�F�i�Q � �
X
k

AykF
�i�
Q Ak (2)

holds. That is, the adjoint squashing map �y with Kraus
operators Ayk map each qubit POVM operator to the corre-
sponding POVM operator for the mode detector. The ad-

joint map is again a completely positive map. It is not
necessarily trace preserving, but it is unital.

The question for the existence of a suitable adjoint
squashing map �y has been formulated as the search for
a suitable set of Kraus operators fAyk g. As the Kraus opera-
tors are not unique, we reformulate the condition Eqn. (2)
using the Choi-Jamiołkowski isomorphism [8,9]. It relates
the map �y to a bipartite operator � on a duplicated output
Hilbert space QQ0 by applying the map to half of a maxi-
mally entangled state j �i � 1=

���
d
p Pd

i�1 jiiQjiiQ0 , where
d � dim�QQ0�, by � � �y � id�j �ih �j�. From this rep-
resentation, one can form the transfer matrix �R by reor-
dering the coefficients via hk; k0j�Rjl; l0i � hk; lj�jk0; l0i.
Given an operator O �

P
i;joi;jjiihjj, we introduce its vec-

tor notation as jOii �
P
i;joi;jjiijji, and so we can write

j�y�O�ii � �RjOii. In this formulation, the search for a
squashing model for a full measurement FM and a target
measurement FQ is the search for a map � such that
 

�RjF�i�Q ii � jF
�i�
M ii; (3a)

hk; k0j�Rjl; l0i � hk; lj�jk0; l0i; (3b)

�y � � 	 0: (3c)

Here, � corresponds to the adjoint map �y. The constraint
that �y be unital, and therefore � trace preserving, is
already contained in the above conditions, as the POVM
elements on M and Q each add up to the identity operator
in their respective Hilbert spaces, as can be easily seen in
the formulation of Eqn. (2). Overall, we have reformulated
the search for a suitable squashing operation as the search
for a positive semidefinite operator � that satisfies a fixed
number of linear constraints, which can be efficiently
solved using convex optimization. Searching for com-
pletely positive maps using these techniques has been
used, for example, in [10,11].

To simplify the search for the appropriate squashing
operation, we can exploit further properties of the physical
measurement. Typical measurement schemes only involve
photon counting and hence commute with a quantum non-
demolition (QND) measurement of the total number of
photons. Consequently, we can decompose the squashing
operation into a photon number measurement, followed by
the appropriate squashing operation conditioned on the
outcome of the QND measurement, as schematically in-
dicated in Fig. 2. This model now casts the problem into
finite dimensions since we only need to find the corre-
sponding map for each finite-dimensional photon number
subspace.

We now consider the situation where we choose as target
measurements the full measurement restricted to the Fock
space containing zero or one photon, which is a qutrit
space. As the resulting POVM elements F�i�Q still commute
with a QND measurement of the total photon number, this
means that the squashing map can be thought of as statis-
tically outputting either no photon or one photon. We can
now split off the zero-photon case easily in the typical

FIG. 1. The full measurement FM (above) has a general optical
input �in, which is first measured by a receiver’s physical
detector B, followed by classical post-processing. The squashed
measurement (below) has the same general optical input �in,
which is then squashed by a map � to a smaller Hilbert space,
followed by a fixed physical measurement FQ. It is required that
both of these measurements produce the same output statistics
for all �in.
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scenario, where the full and target measurements have the
vacuum projection as one POVM element, while none of
the other elements contains a vacuum component. As a
result, the squasher will output a vacuum signal if and only
if the photon number nmeasured in the QND measurement
on the input mode space is zero. To simplify the presenta-
tion, we split these events off as a flag (see Fig. 2) sent by
the squasher, signalling that the input signal contains no
photon, and we can now restrict ourselves to the case that
for n 	 1 input photons, the squasher outputs exactly one
photon in the relevant modes, which enters the target
measurement. In the case of the BB84 and the six-state
measurements, two polarization modes are sufficient to
describe the multiphoton Hilbert space, so we can assume
that for n � 0, exactly one qubit in the form of a photon
with polarization degrees of freedom is output from the
squashing operation. In this formulation, the POVM ele-
ments F�i�Q are now restricted to the full measurements of
the one-photon Hilbert space, as the vacuum events have
been replaced by the flag structure of the squasher.

As a third step, we refine the squasher further by using
the specific structure of the BB84 measurement. Here, the
full measurement operators on the n-photon subspace (n 	
1) can be conveniently written as

 F�b;��M;n �
��1�b

4
�jn; 0i�hn; 0j � j0; ni�h0; nj� �

1

4
; (4)

where � 2 fx; zg labels the basis choice for the polarizing
beam splitter, b 2 f0; 1g corresponds to the ‘‘0’’ or ‘‘1’’
outcome of the detector, and jl; ki� is a two-mode Fock
state with photon numbers l and k with respect to the
polarization mode basis �. We define a subspace P
spanned by the 4 vectors jn; 0i� and j0; ni�, and its or-
thogonal complement P? in the n-photon subspace. A
QND measurement with respect to these two subspaces
commutes with each measurement POVM F�i�Q , and thus
can precede the target detection scheme without loss of
generality. We can therefore define independent squashing
maps for each of the two subspaces, similarly to the treat-

ment of the Fock spaces of photon number n. It is now easy
to identify the squashing map starting on the P?-subspace
since the POVM elements F�b;��M;n restricted to this subspace
are given by 1P?=2. An obvious choice for the squashing
map here is to output the completely mixed qubit state,
which triggers each POVM F�b;��Q with equal probability
(see Fig. 2). This means we can now focus on the remain-
ing part of the squashing operation, namely, for all n 	 1,
the maps �P

n from the four-dimensional subspace P of the
n-photon Fock space to the qubit space.

If the incoming signal is projected onto the subspace P,
then either the map �odd or �even will be applied, depending
on the parity of photon number n. First, consider the case
where n 	 3, the outcome of the QND measurement of the
total photon number, is odd; the case n � 1 is trivial. We
use the following orthonormal basis to represent the 4-
dimensional subspace P: j�1i � jn; 0iz; j�2i � j0; niz,
and

 j�3i �
1

C1
�
����������
2n�2

p
�jn; 0ix � j0; nix� � jn; 0iz�

j�4i �
1

C1
�
����������
2n�2

p
�jn; 0ix � j0; nix� � j0; niz�;

(5)

where we define Cg 

�������������������
2n�g � 1
p

. The qubit measurement

operators F�b;��Q are given by

 

� 1
2 0
0 0

� �
;

0 0
0 1

2

� �
;
1

4

1 1
1 1

� �
;
1

4

1 �1
�1 1

� ��
(6)

in the standard basis. The full measurement operators
F�b;��M;n from Eqn. (4) in the basis given by Eqn. (5) are

 F�b;z�M;n �

1�b
2 0 0 0
0 b

2 0 0
0 0 1

4 0
0 0 0 1

4

2
6664

3
7775;

F�b;x�M;n �
1

4
�
��1�b

4

0 s 0 t
s 0 t 0
0 t 0 u
t 0 u 0

2
6664

3
7775

where 1 is the 4� 4 identity matrix and we define the
constants s 
 21�n, t 
 sC1, u 
 1� s. To obtain their
vectorized form jF�b;��Q ii and jF�b;��M ii, one needs to con-
catenate the columns of their matrix form into vectors.

Now we are ready to impose Eqs. (3) on the adjoint
squashing map. First, note that �R maps real vectors into
real vectors [Eqn. (3a)], and therefore the complex con-
jugate ��R�� also maps these vectors to each other. As a
result, the average of these two also performs the mapping,
and so we can assume that �R is a matrix with real entries.
Also, the target measurement operators, jF�b;��Q ii, only span
a three dimensional vector space, so the matrix �R is not
completely determined by the linear constraints. Keeping
the undetermined entries as open parameters ai, we then

FIG. 2. Reduction of the considered squashing operation of the
BB84 protocol. The squashing operation can be modeled as a
photon number measurement followed by a projection measure-
ment onto a 4-dimensional subspace. Depending on the outcome
of these measurements, one either proceeds with a low-
dimensional squashing operation �P

n or outputs a completely
mixed qubit state.
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obtain �odd, which is given by

 

1 0 0 a1 0 a2 0 a3

0 0 s�a1 0 �a2 0 t�a3 0
0 s�a1 0 0 0 a4 0 a5

a1 0 0 1 t�a4 0 �a5 0
0 �a2 0 t�a4

1
2 0 0 a6

a2 0 a4 0 0 1
2 u�a6 0

0 t�a3 0 �a5 0 u�a6
1
2 0

a3 0 a5 0 a6 0 0 1
2

2
66666666666664

3
77777777777775

:

Using the assignment a1 � s, a2 � 0, a3 � t, a4 � 0,
a5 � 0, a6 � 1=2� s for the open parameters ensures
that � is positive semidefinite. By considering suitable
subdeterminants, it can be shown that these parameters
must be chosen this way, and therefore the squashing
map is unique. Further details will be included in a future
paper. Following a similar procedure, we can also construct
the unique adjoint squashing operation for even n 	 2.
Therefore, the squashing operation for the BB84 detector
with active basis choice and the described post-processing
exists.

The six-state protocol adds another measurement direc-
tion to the BB84 setting, which sorts the polarization of the
incoming photons according to a circular basis choice
(labeled y). Using the same post-processing scheme of
the double-clicks results in similar measurement operators
as given by Eqn. (4) with � 2 fx; y; zg as well as perform-
ing a renormalization. Hence, the overall measurement
description of the six-state protocol is similar to the
BB84 case, where the transfer matrix �R is now completely
determined by the linear constraints, as the POVM ele-
ments of FQ span the whole operator space. However, this
measurement device cannot be squashed down to the qubit
level, since � 6	0. We can verify this statement independent
of any of the reductions introduced earlier: all we need to
show is that � � �y � id�j �ih �j� 6	0. Since the qubit
measurements of the six-state protocol are complete, the
input operator j �ih �j can be expanded into the basis
fF�i�Q � �jg, where the �j are the Pauli operators:

 j �ih �j�
1

4

�
1Q�1Q0 �3

X
��fx;y;zg

�F�0;��Q �F�1;��Q ���T�

�
:

This decomposition has the advantage that the adjoint map
�y can be applied directly to the first subsystem by using
the substitution F�i�Q � F�i�M , which is clear from the prop-
erties of the adjoint squasher. This operator � has negative
eigenvalues, starting in the three photon subspace. For
example, if one tests the operator with the state

 j��i �
1���
2
p �j3; 0iMz

� j1iQ0 � j0; 3iMz
� j0iQ0 �; (7)

where j0iQ0 and j1iQ0 are canonical orthogonal basis states,

we find h��j�j��i � �1=8. This proves that a squashing
map for the six-state protocol does not exist.

To summarize, we have given necessary and sufficient
linear conditions on a positive operator so that a full
measurement can be represented by a concatenation of a
squashing operation and a lower dimensional target mea-
surement. In application to security proofs of QKD, the
existence of a squashing model allows a simple qubit-
based security proof to be lifted to one based on the full
optical implementation, as is the case for the BB84 mea-
surement, and any other protocol using the same measure-
ment. The squashing model for this BB84 measurement
has been independently obtained by Tsurumaru and
Tamaki [12]. In the absence of a squashing model, such a
shortcut is not possible and another method of proving
security of the full optical scenario has to be found, such
as for the six-state measurement. Note that other post-
processing methods of the full measurement and target
measurements could lead to a squashing model for the
six-state protocol detector. As the squashing property holds
for the detection setup independent of the use of the
detection device, the method outlined in our Letter will
help to simplify the analysis in other quantum communi-
cation contexts, including the verification of entanglement
of optical modes with threshold detectors.
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