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We compute the binding energies, radii, and densities for selected medium-mass nuclei within coupled-

cluster theory and employ a bare chiral nucleon-nucleon interaction at next-to-next-to-next-to-leading

order. We find rather well-converged results in model spaces consisting of 15 oscillator shells, and the

doubly magic nuclei 40Ca, 48Ca, and the exotic 48Ni are underbound by about 1 MeV per nucleon within

the coupled-cluster singles-doubles approximation. The binding-energy difference between the mirror

nuclei 48Ca and 48Ni is close to theoretical mass table evaluations. Our computation of the one-body

density matrices and the corresponding natural orbitals and occupation numbers provides a first step to a

microscopic foundation of the nuclear shell model.
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Introduction.—Ab initio nuclear structure calculations
have made great progress in the past decade. Light nuclei
up to carbon or so can now be described in terms of their
nucleonic degrees of freedom and realistic nucleon-
nucleon (NN) forces (i.e., those that include pion exchange
and fit the NN phase shifts up to 350MeV lab energy with a
�2 � 1 per datum) augmented by a three-nucleon force
(3NF) [1–3]. One of the major advances is due to the
systematic construction of nuclear forces within chiral
effective field theory (EFT) [4,5]. In this EFT, unknown
short-ranged physics of the nuclear force is systematically
parametrized in terms of contact terms and their low-
energy constants, while the long-range part of the interac-
tion stems from pion exchange. One of the hallmarks of
this approach is the ‘‘power counting’’, i.e., an expansion
of the nuclear Lagrangian in terms of the momentum ratio
Q=�. Here, Q denotes the typical momentum scale at
which the nucleus is probed, while � denotes the high-
momentum cutoff scale that limits the applicability of the
EFT. Within this approach, three-nucleon forces appear
naturally at order ðQ=�Þ3, and four-nucleon forces appear
at order ðQ=�Þ4 [6–8].

The chiral interactions have been probed in light systems
up to mass 13 [9–12]. Fujii et al. have employed chiral NN
interactions for studies of 16O [13] within the unitary-
model-operator approach (UOMA). Unfortunately, virtu-
ally nothing is known about chiral interactions in heavier
nuclei. In particular, a study of their saturation properties is
missing, and the contributions of chiral NN interactions to
nuclear binding and structure in medium-mass nuclei
needs to be determined. It is the purpose of the present
Letter to fill this gap.

Ab initiomethods began to explore medium-mass nuclei
only very recently. Gandolfi et al. [14] employed the
auxiliary field diffusion Monte Carlo method for a compu-
tation of the binding-energy of 40Ca. However, this im-
pressive calculation is not entirely realistic since the

employed Argonne v0
6 potential lacks the spin-orbit inter-

action. Roth and Navrátil [15] employed softer renormal-
ized NN interactions and computed the binding energy of
40Ca within an importance truncated no-core shell-model
approach. However, this calculation was criticized [16,17]
for its convergence properties, the violation of Goldstone’s
linked cluster theorem and the corresponding lack of size
extensivity. In this Letter, we employ the bare chiral NN
interaction with a cutoff of � ¼ 500 MeV by Entem and
Machleidt [7], and use the size-extensive coupled-cluster
method [18–23] for the computation of various properties
of the medium-mass nuclei 40Ca, 48Ca, and the exotic 48Ni.
The use of a bare NN interaction has the advantage that it
avoids the introduction of additional many-body forces
that are typically generated in secondary renormalization
procedures of the two-body force. While our calculation
includes the chiral NN interaction [7] at next-to-next-to-
next-to-leading order (NNNLO), it neglects the contribu-
tions of any 3NFs.
This Letter is organized as follows. First, we briefly

introduce spherical coupled-cluster theory. Second, we
compute the binding energies of the nuclei 4He, 16O,
40Ca, 48Ca, and 48Ni from a bare chiral NN potential.
Spherical coupled-cluster theory.—Coupled-cluster the-

ory [18–23] is based on the similarity transform

�H ¼ e�T̂ĤeT̂ (1)

of the normal-ordered Hamiltonian Ĥ. Here, the
Hamiltonian is normal ordered with respect to a product
state j�i which serves as a reference. Likewise, the

particle-hole cluster operator T̂ ¼ T̂1 þ T̂2 þ . . .þ T̂A is
defined with respect to the reference state. The k-particle
k-hole (kp� kh) cluster operator is

T̂ k ¼ 1

ðk!Þ2
X

i1;...;ik;a1;...;ak

ta1...aki1...ik
âya1 . . . â

y
ak âik . . . âi1 : (2)
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Here and in the following, i, j, k; . . . label occupied single-
particle orbitals, while a, b, c; . . . label unoccupied orbitals
of the reference state; i.e., they should have significant
overlap with the ground-state. Throughout this work we
will restrict ourselves to the coupled-cluster singles-

doubles (CCSD) approximation T̂ � T̂1 þ T̂2. The un-
known amplitudes tai and tabij in this expression are deter-

mined from the solution of the coupled-cluster equations

0 ¼ h�a
i j �Hj�i and 0 ¼ h�ab

ij j �Hj�i: (3)

Here j�a
i i ¼ âya âij�i is a 1p� 1h excitation of the refer-

ence state, and j�ab
ij i is a similarly defined 2p� 2h excited

state. Once the CCSD equations are solved, the correlation
energy of the ground state is computed as

Ecorr ¼ h�j �Hj�i: (4)

Coupled-cluster theory fulfills Goldstone’s linked clus-
ter theorem and therefore yields size-extensive results.
This is particularly important in applications to medium-
mass nuclei. Within the CCSD approximation, the compu-
tational effort scales as n2on

4
u, where no and nu denote the

occupied and unoccupied orbitals of the reference state
j�i, respectively. This approximation typically captures
more than 90% of the correlation energy [23]. This method
has recently been employed in several ab initio nuclear
structure calculations [24–28]. It is also able to compute
lifetimes of unstable nuclei [29], to treat 3NFs [30], and it
meets benchmarks [17].

For spherical reference states (i.e., nuclei with closed
major shells or closed subshells), one can employ the
spherical symmetry to further reduce the number of un-
knowns (i.e., the number of cluster amplitudes). For such

nuclei, the cluster operator T̂ is a scalar under rotation, and
depends only on reduced amplitudes. A naive estimate
shows that a model space of no þ nu single-particle states

consists of only ðno þ nuÞ2=3 j shells. Thus, the entire
computational effort is approximately reduced by a power
2=3 within the spherical scheme compared to the m
scheme. We have derived and implemented the spherical
scheme within the CCSD approximation. We tested that
our m-scheme code and the spherical code give identical
results for several cases.

Results.—The single-particle basis consists of wave
functions of the spherical harmonic oscillator with the
spacing @!, the radial quantum number n, and angular
momentum l, and we include single-particle states with
2nþ l � N in our model space. The largest model space
we consider (N ¼ 14) consists of 15 oscillator shells. In
such a large model space, configuration interaction be-
comes impossible as the proton space alone consists of
about 1040 Slater determinants for 40Ca. We first transform
the Hamiltonian to the spherical Hartree-Fock basis, and
the CCSD equations are solved in this basis. Fully con-
verged observables must be independent of the parameters
N and @! of our single-particle basis. In practice, we
cannot go to infinitely large spaces, and the dependence

of our results on these parameters serve to gauge the
convergence.
As a test case, Fig. 1 shows that the CCSD results for

4He are converged within a few keV with respect to in-
creases in the size of the model space (denoted by N) and
variation of the oscillator frequency. For the CCSD-T1
triples correction [31] we employ our m-scheme code for
in model spaces up to N ¼ 7. This yields another 1.3 MeV
of binding, is very close to the virtually exact Faddeev-
Yakubowski result E ¼ �25:41 MeV quoted in Ref. [10]
for the same chiral NN interaction. The experimental value
is E ¼ �28:3 MeV, and the additional binding is due to
the missing 3NFs.
The CCSD energies for 16O (see Fig. 2) are converged

within the order of about 100 keV and change by less than
1 MeV over a considerable variation of the oscillator
frequency. This result is in reasonably good agreement
with the work by Fujii et al. who obtained �110 MeV as
the ground-state energy from the UOMA [13]. Recall that
both methods are approximations and based on similarity-
transformed Hamiltonians.
We turn to nuclei in the mass-40 region. The CCSD

results for 40Ca are shown in Fig. 3. Increasing the model
space from N ¼ 13 to N ¼ 14 yields an additional
0.9 MeV, and the @!-dependence is less than 2.2 MeV
over the considered range of oscillator frequencies. Thus,
the convergence with respect to the parameters of our
model space is very satisfactory, and we are missing about
10% of the experimental binding-energy of 342 MeV.
We also computed the ground-state energies of the mir-

ror nuclei 48Ca and 48Ni. For 48Ca the convergence of the
results is satisfactory as shown in Fig. 4, and the conver-
gence is very similar for 48Ni. 48Ni was discovered only
recently [32]. It is believed to be a two-proton emitter, and
its lifetime is very large compared to a typical nuclear time
scale (i.e., the ‘‘orbital period’’ of a nucleon inside the
nucleus). Thus, we can describe 48Ni in terms of a spherical
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FIG. 1 (color online). CCSD ground-state energy for 4He from
a chiral NN potential at order NNNLO as a function of the
oscillator spacing @! and the size of the model space.
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Hartree-Fock basis based on the oscillator orbitals. Recall
that the chiral interaction includes charge symmetry-
breaking and charge independence-breaking effects, and
we also included the Coulomb interaction. The difference
of our CCSD results for the mirror nuclei 48Ca and 48Ni is
1.38 MeV per nucleon and stems from these combined
effects. Theoretical mass table evaluations [33] suggest
that the binding-energy of 48Ni is 1.43 MeV per nucleon
smaller than for 84Ca. Our results are in good agreement
with this estimate. The density of 48Ca is shown in Fig. 5.
The results still exhibit a dependence of the oscillator spac-
ing @!, and the central density decreases with decreasing
@!. This observable is less well converged than the energy
with respect to the size of the model space. The conver-
gence is slow with respect to the maximum radial quantum
number n employed in our model space, while the single-
particle angular momentum l could be limited to l � 7.

Table I summarizes some of our results which are taken
at @! ¼ 28 MeV in the largest model spaces. We com-
puted the potential energy V via the Hellman-Feynman
theorem. The fourth column shows the energy deviation

�E � E� Eexp from the experimental binding energy
Eexp for the considered nuclei. This difference is mainly

due to the omitted 3NFs and the missing triples correction.
Note that 40Ca is particularly tightly bound when compared
to the other nuclei. The isotopes 16O, 48Ca, and 48Ni all
lack about �E=A � 1:2 MeV of binding energy when
compared to experiment, while this difference is consid-
erably smaller for 40Ca. This result is somewhat surprising
since 48Ca is thought to be a better example of a doubly
magic nucleus than 40Ca. There seems to be a cancellation
between triples corrections and contributions of 3NFs in
40Ca. In other words, the isospin dependence and/or mass
dependence of the 3NF is expected to be nontrivial. The
charge radii R are corrected according to Ref. [34] to
account for the finite charge radii of the nucleons. They
are computed from the leading approximation of the
center-of-mass corrected intrinsic density [25]. Note that
the radii change about 0.1–0.25 fm as the oscillator spacing
@! is varied in the range that is shown in the previous
figures, and they decrease with increasing values of @!.
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FIG. 3 (color online). Same as Fig. 1 but for 40Ca.
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FIG. 4 (color online). Same as Fig. 1 but for 48Ca.
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FIG. 5 (color online). Densities for 48Ca from a chiral NN
potential at order NNNLO for different oscillator spacings.
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FIG. 2 (color online). Same as Fig. 1 but for 16O.
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We also compute the one-body density matrices �pq ¼
hâypâqi of the ground states within the equation-of-motion

CCSD [35]. The diagonalization of this matrix yields
natural orbitals and the corresponding occupations. These
model-dependent quantities are, of course, not observables
but rather tied to the specific interaction we employed. The
dominant occupation probabilities are larger than 0.95, and
this indicates that the considered nuclei are indeed doubly
magic. This result is nontrivial. Note that the Hartree-Fock
approximation does not even yield bound nuclei. Yet the
CCSD correlations imprinted onto the Hartree-Fock state
yield a rather simple state. To our knowledge, this is the
first time the phenomenological shell-model picture of
independent nucleon motion arises within an ab initio
approach.

Summary.—We have studied the saturation properties of
chiral NN interactions at the order NNNLO in medium-
mass nuclei within the CCSD approximation of coupled-
cluster theory. Our results exhibit a very satisfactory con-
vergence with respect to the size of the model space and are
only weakly dependent on the oscillator parameter. We find
that the employed bare chiral NN potential underbinds
nuclei by about 1 MeV per nucleon. The comparison of
40Ca with 48Ca and 48Ni hints at an isospin dependence of
the 3NF in medium-mass nuclei. Within the CCSD ap-
proximation, the proton-rich nucleus 48Ni is less tightly
bound by 1.38 MeV per nucleon than its mirror nucleus
48Ca, and this result is in good agreement with theoretical
mass table evaluations. These calculations pave the way to
probing chiral interactions in even heavier nuclei and link
the phenomenological shell model to ab initio calculations.
The inclusion of triples corrections and 3NFs is underway.
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TABLE I. CCSD results for various nuclei from a chiral
nucleon-nucleon potential at order NNNLO. E=A and V=A:
ground-state and potential energy per nucleon, respectively.
�E=A: difference to the experimental ground-state energy (theo-
retical mass table evaluations for 48Ni). R and Rexp are the

computed and measured charge radius.

Nucleus

E=A
[MeV]

V=A
[MeV]

�E=A
[MeV]

R
[fm]

Rexp

[fm]

4He �5:99 �22:75 1.08 1.86 1.64
16O �6:72 �30:69 1.25 2.71 2.74
40Ca �7:72 �36:40 0.84 3.24 3.48
48Ca �7:40 �37:97 1.27 3.22 3.47
48Ni �6:02 �36:04 1.21 3.50
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