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Ab Initio Many-Body Calculations of n-*H, n-‘He, p->*He, and n-1Be Scattering

Sofia Quaglioni™ and Petr Navratil*

Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, California 94551, USA
(Received 15 April 2008; published 29 August 2008)

We develop a new ab initio many-body approach capable of describing simultaneously both bound and
scattering states in light nuclei, by combining the resonating-group method with the use of realistic
interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves

translational symmetry and Pauli principle. We present phase shifts for neutron scattering on H, “He, and

10Be and proton scattering on **He, using realistic nucleon-nucleon potentials. Our A = 4 scattering
results are compared to earlier ab initio calculations. We demonstrate that a proper treatment of the
coupling to the n-'"Be continuum is successful in explaining the parity-inverted ground state in ''Be.
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The development of an ab initio theory of low-energy
reactions on light nuclei is key to further refining our
understanding of the fundamental internucleon interactions
and providing accurate predictions of crucial reaction rates
for nuclear astrophysics. However, ab initio calculations
for scattering processes involving more than four nucleons
overall are challenging and still a rare exception [1]. In this
Letter, we combine the resonating-group method (RGM)
[2] and the ab initio no-core shell model (NCSM) [3] into a
new many-body approach (ab initio NCSM/RGM) capable
of treating bound and scattering states of light nuclei in a
unified formalism. The RGM is a microscopic cluster
technique based on A-nucleon Hamiltonians, using fully
antisymmetric many-body wave functions built assuming
that the nucleons are grouped into clusters. The NCSM is
an ab initio approach to the microscopic calculation of
ground and low-lying excited states of light nuclei with
realistic two- (NN) and, in general, three-nucleon (NNN)
forces. Here, we complement the ability of the RGM to
deal with scattering and reactions with the use of realistic
interactions and a consistent ab initio description of the
nucleon clusters, achieved via the NCSM. Within this new
approach, we study the n->H, n-*He, n-'°Be, and p->*He
scattering processes and address the parity inversion of the
'1Be ground state (g.s.), using realistic NN potentials.

We start from the wave function for a scattering process
involving pairs of nuclei that can be cast in the form
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through an expansion over binary-cluster channel-states of
total angular momentum J, parity 7, and isospin 7T,

1Oy =[(|A—a o IT' T)la ar I To) DY (g - )]V

X 6(7'_ rA—a,a)

rrAfa,a

. (2)

The wave functions of the (A — a)- and a-nucleon clusters
are each antisymmetric and depend on translationally in-
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variant internal coordinates. They are eigenstates of the
H 4 and H(, intrinsic Hamiltonians with spin, parity,
isospin, and additional quantum numbers I;, 7;, T;, and «;,
respectively, where i = 1, 2. The centers of mass of the two
clusters are separated by the relative vector 7,4, ,. Relative
angular momentum and channel spin are denoted by € and
s, respectively. The intercluster antisymmetrizer for the
(A — a, a) partition in Eq. (1) can be schematically written
as A, = [(A — a)la!/A!]'/2S ,(—1)PP, where P are per-
mutations among nucleons pertaining to different clusters
and p the number of interchanges characterizing them. The
coefficients of the expansion with respect to the channel
index v={A—a aI]'T;a ay1;°Ty;s€} are the
relative-motion wave functions g7"7(r), which represent
the unknowns of the problem. They can be determined by
solving the many-body Schrédinger equation in the Hilbert

space spanned by the basis states A, |®7T),

Z fdrrﬂ({j,ﬁf(r’, gl (r) =0, 3)

where the integral kernel, nonlocal due to the intercluster
antisymmetrizers, is given by

KT, r) = (DT A (H— AL, (@)

Here, E is the total energy in the center-of-mass (c.m.)
frame, and H is the intrinsic A-nucleon microscopic
Hamiltonian, which it is useful to decompose into, e.g.,

H= Trel(r) + Vrel + VC(r) + H(A—a) + H(a)' (5)

Further, T, (7) is the relative kinetic energy, and 'V, is the
sum of all interactions between nucleons belonging to
different clusters after subtraction of the average
Coulomb interaction between them, explicitly singled out
in the term V(r) = Z,,Z,,€?/r, where Z,, and Z,, are
the charge numbers of the clusters in channel v.

We obtain the cluster eigenstates entering Eq. (2) by
diagonalizing H 4, and H,) in the model space spanned
by the NCSM basis. This is a complete harmonic oscillator
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TABLE I

Calculated *H and “He g.s. energies (in MeV), n->H, n-*He, and p-*He phase shifts (in degrees), and n->H and n-*He total

cross sections (in barns) for increasing N, at 7{} = 18 MeV, obtained using the V)., NN potential (derived from AV18 with cutoff
A =21 fm™") [8]. Only the g.s. of the *H and “He nuclei were included in the scattering calculations.

3H n-H (Ey, = 0.75 MeV)

Ninax Eg 0" ('Sy) 0~ CPy) 17 (5) 1= ('P) 17CGP) 17 (e) 27 CPy) o,
9 ~7.80 -27.8 2.30 —26.2 2.19 4.96 -175 751 1.06
11 ~7.96 -31.3 2.39 —28.1 2.63 593 —-12.7 6.42 1.20
13 ~8.02 —32.4 2.15 —28.8 3.10 6.17 -9.1 5.75 1.25
15 —8.11 -33.2 2.45 ~29.9 3.46 6.12 -95 6.08 133
17 —8.12 —34.2 2.60 ~30.9 3.74 630 -10.7 6.19 1.41
19 —8.16 —34.8 2.49 -31.3 4.00 6.49 -10.1 6.02 1.44

“He n-*He (Ey, = 5.0 MeV) p-*He (Ey, = 5.0 MeV)

Nnmax Eg %+ (251/2) B (2P1/2) - (2P3/2) o, %* (251/2) i (2P1/2) - (2P3/2)
9 ~27.00 ~57.9 335 81.8 1.95 —45.8 31.3 76.5
11 —27.41 —58.6 33.7 86.1 1.98 —46.4 31.9 80.2
13 —27.57 —58.7 34.0 85.7 1.98 —46.6 32.0 80.0
15 ~27.75 —58.7 33.9 84.6 1.97 —46.6 32.1 79.9
17 ~27.77 ~58.6 33.9 84.8 1.97 —46.5 32.0 79.9

(HO) basis, the size of which is defined by the maximum
number, N.., of HO quanta above the lowest configura-
tion shared by the nucleons. Thanks to the unique proper-
ties of the HO basis, we can use Jacobi-coordinate wave
functions [4] for both nuclei or only for the lightest of the
pair (typically a = 4), and still preserve translational in-
variance. In the second case, we expand the heavier cluster
on a Slater-determinant (SD) basis, and remove completely
the spurious c.m. components in a similar fashion as in
Refs. [5,6]. We exploited this dual approach to verify our
results. The use of the SD basis is computationally advan-
tageous and allows us to explore reactions involving
p-shell nuclei. In calculating (4), all “direct’ terms arising

from the identical permutations in both le,, and ﬁly/ are
treated exactly with the exception of (®7T|V |®]T).
The latter and all remaining terms are obtained by expand-
ing the Dirac 6 of Eq. (2) on a set of HO radial wave
functions with identical frequency (), and model-space
size N, consistent with those used for the two clusters.
In this respect, we note that 'V, is localized also in the
presence of the Coulomb force. We solve Eq. (3) via the
coupled-channel R-matrix method on a Lagrange mesh [7]
imposing either bound-state or scattering boundary con-
ditions for g7"7(r) at large r.

All calculations in the present Letter were carried out
using binary-cluster channels (2) with a = 1. We first
discuss results obtained expanding the wave function (1)
on all the allowed basis states with the (A — 1)-nucleon
cluster in its g.s. Table I shows the behavior with respect to
Ny Of selected A = 4, 5 data obtained using the V,,; NN
potential [8]. The overall convergence is fairly satisfactory,
with somewhat larger relative differences for the phase
shifts of small magnitude.

In what follows, we present results obtained using ef-
fective interactions derived from the underlying realistic
NN potential, Vy, through a unitary transformation.
Starting from the relevant two-nucleon Hamiltonian (for
notation and definitions see Ref. [4]) H? = Hy + Vi,
with V), = Vy(v/27) — mQ22 /A, the cluster eigenstates
are obtained employing the usual NCSM two-body effec-
tive interaction Vi = Hoep — Hyp, Where Hoy is the
Hermitian effective Hamiltonian. However, in place of
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FIG. 1 (color online). Calculated n->H phase shifts as a func-
tion of the relative kinetic energy in the c.m. frame Ey;,, using
the N°LO NN potential [9]. Only the (A — 1)-cluster g.s. was
included in the present calculation. Dependence on N, at
nQ) = 22 MeV compared to AGS results of Ref. [10,11].
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FIG. 2 (color online). Same as Fig. 1 for p->He scattering.

the bare NN potential entering 'V, we adopted the new
effective interaction V) o = Hoerr — Hb.i, Wwhere Hb e is
the effective Hamiltonian derived from HSY = Hy, + Vi,
with Vi, = —mQ?7/A. Note that V) — Vy in the limit
Nnax — 0. Figures 1 and 2 and the right panel of Fig. 3
present A = 4, 5 scattering phase shifts for the N°LO NN
potential [9] derived within chiral effective-field theory at
next-to-next-to-next-to-leading order. For the whole en-
ergy range, we find less than 2 deg absolute difference
between the phases obtained in the largest and next-to-
largest model spaces, a sign of convergence. The only
exception is represented by the 2P, /, Phase shifts of the
n-a system, for which this difference rises up to 5 deg in
the range 1 MeV < E};, <4 MeV. As a comparison, we
show in the left panel of Fig. 3 the n-a phase shifts
obtained with the (bare) V), interaction. The convergence
rate is clearly much faster for Vig;.

To verify our approach, in Figs. 1 and 2, we compare our
n-H and p-*He results to earlier ab initio calculations
performed within the Alt, Grassberger, and Sandhas
(AGS) formalism [10,11], using the same N*LO NN po-

0 [deg]

E;, [MeV]

E\;, [MeV]

FIG. 3 (color online). Dependence on N, of the n-a(g.s.)
phase shifts with the Vj, [8] (left panel) and N3LO [9] (right
panel) NN potentials at 7{) = 18 and 19 MeV, respectively.

FIG. 4 (color online). Influence of the lowest six excited states
(070,070,170, 171,270, 271) of the « particle on the n-a
phase-shift results for the N’LO NN potential [9].

tential. In general, the agreement between the two calcu-
lations worsens as the relative kinetic energy in the c.m.
frame, E,;,, increases. For the P-waves, in particular, we
can reasonably reproduce the AGS calculation within
1 MeV off threshold, while we can find differences as large
as 17 deg (3P2) at Ey;, = 2.6 MeV. These discrepancies
are due to the influence played by closed channels not
included in our calculations, such as those with the A —
1 = 3 eigenstates above the I = %J“ g.s.,and (A —a = 2,
a = 2) configurations, present in the AGS results. In
Ref. [10], it was shown that the omission of three-nucleon
partial waves with % < I, = 3 leads to comparable effects.

We explore the effect of the inclusion of excited states of
the (A — 1)-cluster on the A = 5 system. Channels with
a > 1 have here a much suppressed effect due to the large
binding energy of the *He nucleus. Figure 4 shows n-a
phase shifts for six sets of binary-cluster channels obtained
including the six combinations of “He states listed in the
legend. The 25, /, Phase shifts are affected minimally by

0 4 8 12 0 4 8 12 16
Ekin [MeV] Ekin [MeV]

FIG. 5 (color online). Calculated n-a (left panel) and p-«
(right panel) phase shifts for the N3LO NN potential [9],
including the “He g.s., 070,070, 170,171,270, and 2™ 1 states,
compared to an R-matrix analysis of data ( + ) [12].
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TABLE II. Calculated energies (in MeV) of the 1°Be g.s. and
of the lowest negative- and positive-parity states in !'Be, ob-
tained using the CD-Bonn NN potential [13] at 2} = 13 MeV.
The NCSM/RGM results were obtained using n + '°Be configu-
rations with Ny, = 6 g.s., 27, 25, and 1} states of 1°Be.

10Be llBe(%f) llBe(%Jr)
Nmax Eg4 s. E Eth E Eth
NCSM [14,15] 8/9 —57.06 —56.95 0.11 —54.26 2.80
NCSM [14,151,* 6/7 —57.17 —57.51 —0.34 —54.39 2.78
NCSM/RGM* —57.59 —0.42 —57.85 —0.68
Expt. —64.98 —65.16 —0.18 —65.48 —0.50

“present calculation.

the 070 excited state, while no further corrections are
found in the four larger Hilbert spaces (the 2Sl /2 results

of which we omit for clarity of the figure). We find larger
deviations on the 2P1 /2 and 2P3 P phase shifts, after in-
clusion of the 070, 170, and 171 states for the first, and of
the 270 and 27 1 states for the second.

In Fig. 5, the n- and p-« phase shifts obtained with the
N3LO NN potential, including the first six *He excited
states, are compared to an accurate multichannel R-matrix
analysis of the nucleon-« scattering data [12]. The 2S1 P
phase shifts are in good agreement with experiment, also in
the presence of the p-a Coulomb repulsion. The magni-
tude of the 2D3 P phase shifts is also qualitatively repro-

duced. On the contrary, the P phase shifts present both
insufficient magnitude and splitting with respect to the
R-matrix analysis. The 1* channel is dominated by the
repulsion between nucleon and « particle induced by the
Pauli exclusion principle. Consequently, the short-range
details of the nuclear interaction play a minor role on the
s 12 phase shifts, for which, as shown in Fig. 3, we find

very similar results using the V. potential. On the other
hand, the *P, , and *P; ,, phase shifts show sensitivity to

the interaction model, and, in particular, to the strength of
the spin-orbit force. The present discrepancy with respect
to experiment may be due to the omission of the NNN
terms of the chiral interaction, which would probably
enhance the spin-orbit splitting.

To show the promise and flexibility of our approach, we
present in Table IT and Fig. 6 results for a much heavier
(A = 11) system. The parity-inverted g.s. of ''Be, one of
the best examples of disappearance of the N = 8 magic
number with increasing N/Z ratio, has been so far left
unexplained by ab initio calculations [15]. Possibly the
NNN interaction plays a role in the inversion mechanism.
In any case, only when an approach is capable of describ-
ing the !'Be halo can one obtain a meaningful insight. The
HO asymptotic behavior in the standard NCSM does not
favor extended n-'Be configurations [15], thus altering the
S-wave relative kinetic and potential energies, with a re-

10Be states

FIG. 6 (color online). Calculated %S 12 n-1"Be phase shifts as a
function of Ey;,. NCSM/RGM calculation as in Table II. The
obtained scattering length is +10.7 fm.

sulting net underbinding of the '"Be 1* state. In the
ab initio NCSM/RGM, one gets the correct relative kinetic
energy, due to the rescaling of the relative wave function in
the internal region when the Whittaker tail is recovered.
This is the main cause of the dramatic decrease (~3.5
MeV) of the energy of the %* state, which makes it bound
and even leads to a g.s. parity inversion.
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