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We investigate the interactions and chiral properties of the four spin- 32 baryons N�ðD13Þ, NþðP13Þ,
�þðP33Þ, and ��ðD33Þ together with the nucleon. We construct the SUð2ÞR � SUð2ÞL invariant inter-

actions between the spin- 12 and spin- 32 baryons with the aid of a new, specially developed spin and isospin

projection technique for these baryon fields, where the chiral invariant interactions contain one- and two-

pion couplings. We obtain simple relations for the coupling constants of the one- and two-pion spin–12 -
3
2

transitions terms. The relation for the one-pion interactions reasonably agrees with the experiments, which

suggests that these spin- 32 baryons are chiral partners.
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Chiral symmetry is a key to understanding strong inter-
action. When the spontaneous breakdown SUð2ÞR �
SUð2ÞL ! SUð2ÞV occurs, the broken symmetry plays a
dynamical role in various processes accompanying the
Nambu-Goldstone bosons, i.e., the pions. Hadrons are
then classified according to the residual symmetry
SUð2ÞV . If chiral symmetry is restored at high temperature
or density, hadrons should form degenerate multiplets of
the full chiral group representations ðIR; ILÞ, where IR [IL]
is the isospin for the SUð2ÞR [SUð2ÞL]. Even in the broken
phase, we may expect that hadrons are expressed as one or
a simple superposition of chiral multiplets [1]. Familiar
examples are the chiral mesons ð�; ~�Þ and the vector
mesons ð ~�; ~a1Þ. However, the role of chiral symmetry in
the classification of the baryons has been less explored. It is
in this regard that we can shed some new light.

The linear realization of chiral symmetry offers two
advantages. First, the properties of different hadrons in
the same chiral multiplet are related by the larger symme-
try SUð2ÞR � SUð2ÞL than SUð2ÞV , which reduces the
number of free parameters. Second, it is convenient for
the study of property changes towards the chiral restoration
as functions of the chiral condensate. Having these advan-
tages, the purpose of this Letter is to investigate the prop-
erties of baryons in a manner that respects chiral symmetry.

It is particularly interesting that the masses of
�þ

P33
ð1232Þ and N�

D13
ð1520Þ (the superscript indicates the

parity) were reproduced in the quenched lattice QCD and
QCD sum rule [2–7], which validates to some extent the
empirical assumption that the baryons are dominated by
their 3q Fock components. Recently, we clarified the rela-
tion between the baryon fields’ chiral multiplets and their
quark structures [8]. For instance, the interpolating fields
used in Refs. [2–7] belong to a chiral multiplet ð1; 12Þ �
ð12 ; 1Þ [8]. This is our starting assumption where a set of

spin- 32 baryons form the multiplet ð1; 12Þ � ð12 ; 1Þ as chiral

partners. We extend this idea to include two other four-star

resonances, the Nþ
P13

ð1720Þ and ��
D33

ð1700Þ, following Jido
et al. [9], where the four spin- 32 baryons form a certain set

of chiral multiplets, the so-called quartet scheme.
Reference [9] mostly investigated the interactions between
hadrons within the same spin and chiral multiplet. The
inclusion of other hadrons, in particular, the ground state
nucleon, enables us to test such a framework in comparison
with the experimental data not only for masses but also for
other quantities such as resonance decays and scatterings.
In this Letter, we construct an effective Lagrangian for

four types of four-star resonances, �ð1232Þ, Nð1520Þ,
Nð1720Þ, and �ð1700Þ together with the ground state nu-
cleon. We investigate the structures of the one- and two-
pion couplings. We derive a relation among the one-pion
coupling constants of the four baryon resonances, which
agree well with the experimental data.
We begin with the nucleon’s chiral multiplet. There are

two possibilities, ð12 ; 0Þ � ð0; 12Þ and ð1; 12Þ � ð12 ; 1Þ, for the
nucleon as a three-quark field. As usual, we assume the
nucleon to be dominated by the fundamental representa-
tion. In addition, we have shown [8] that the nucleon
belongs only to the fundamental representation, irrespec-
tive of the choice of the nucleon operators as long as it is a
local three-quark field. There are also two possible chiral
representations for the �ð1232Þ: ð1; 12Þ � ð12 ; 1Þ and ð32 ; 0Þ �ð0; 32Þ. We choose the former one as is common in the

literature (see Ref. [9]).
Now we define two types of diquarks: (i) a Lorentz

vector isoscalar diquark V� [IðJÞP ¼ 0ð1Þ�] and (ii) an
axial-vector isovector diquark A�i [1ð1Þþ],

V� ¼ ~q��q; A�i ¼ ~q���5�
iq; (1)

where ~q ¼ qTCði�2Þ�5 is a transposed quark field. These
diquarks form the chiral multiplet ð12 ; 12Þ similar to the� and

~�, which is a key ingredient to constructing chiral invariant
interactions. We will come back to this point later. There is
one possible operator with IðJÞ ¼ 3

2 ð32Þ,
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�
�i
A ¼ Aj

��
��
3=2P

ij
3=2q; (2a)

and two with IðJÞ ¼ 1
2 ð32Þ,

N
�
V ¼ V��

��
3=2�5q; (2b)

N
�
A ¼ Ai

��
��
3=2�

iq: (2c)

Here the isospin projection operators Pij
I (I ¼ 1

2 ;
3
2 ) sat-

isfy the completeness relation �ij ¼ Pij
1=2 þ Pij

3=2.

Similarly the local spin projection operators ���
J (J ¼

1
2 ;

3
2 ) satisfy g�� ¼ �

��
1=2 þ �

��
3=2. The explicit form of the

projection operators is given in Ref. [8]. Note that we need
to use the nonlocal projection operators in order to obtain
the spin- 32 baryons containing only the physical degrees of

freedom. However, the type of spin projection operators,
local or nonlocal, makes no difference in the chiral trans-
formation of the spin- 32 baryons [8]. Our strategy is then

firstly to use the local projection operators in the construc-
tion of the Lagrangian, and later to eliminate the spin- 12
components in the calculations of the physical quantities,
the one-pion decays in the present context.

Taking into account the Pauli principle, as implemented
by the Fierz transformation here, and proper normalization,
we define the baryon fields as

�
�i
1 ¼ ��i

A

2
; (3a)

N�
1 ¼

ffiffiffi
3

p
2

N�
V

2
þ 1

2

N�
A

2
ffiffiffi
3

p ; (3b)

where we factor out certain coefficients so as to show

explicitly the normalized baryon fields �
�i
A =2, N

�
V =2, and

N�
A =2

ffiffiffi
3

p
. Note that the mixing between N�

V and N�
A results

from the chiral transformations of V� and A�i, and the
coefficients of N

�
V and N

�
A are determined by the Fierz

transformation [8]. The chiral transformation properties
are given by

�~a
5N

�
1 ¼ 	

�
5

3
ia � ��5N

�
1 þ 4ffiffiffi

3
p i�5a ���

1

�
; (4a)

�~a
5�

�i
1 ¼ 	

�
4ffiffiffi
3

p i�5a
jPij

3=2N
�
1 � 2

3
i�i�5a ���

1

þ ia � ��5�
�i
1

�
; (4b)

where 	 ¼ þ1. Equations (4) show that N
�
1 and �

�i
1 are

chiral partners forming the multiplet ð1; 12Þ � ð12 ; 1Þ.
Even after establishing these chiral transformations, it is

a nontrivial task to build chirally invariant interactions for
these fields, so we shall develop a new method to project
out the good spin and isospin parts from chiral invariant
operators containing reducible products of three-quark
fields. This projection technique is performed in two steps.
First, we adopt interactions containing the quark, diquark,

and meson fields, where baryons are described as direct
products of a quark and a diquark. Chiral invariance of
such interactions is shown by using the equivalence of the
chiral transformations of ðV�; A�iÞ and ð�;�iÞ. Second,
because such composite operators are reducible under the
chiral, spin, and isospin transformations, we perform the
decomposition into irreducible spin and isospin parts con-
taining only chiral-, spin-, and isospin-projected baryons.
As an illustration, let us consider the vector and axial-

vector diquarks (V�, A�i). As explained above, they be-
long to the chiral multiplet ð12 ; 12Þ similar to ð�; ~�Þ. The
combination V2

� þ A2
� is therefore a chiral scalar, which

immediately leads to the chiral invariant term �qðV2
� þ

A2
�ÞU5q, where U5 ¼ �þ i�5� � �. The direct products

of a quark and a diquark V�q and A�iq contain several
kinds of baryons with IðJÞ ¼ 1

2 ð12Þ, 1
2 ð32Þ, 3

2 ð32Þ [10]. The

decomposition into irreducible parts is carried out by using
the completeness relations for both the spin and isospin
projection operators. The resulting interaction Lagrangian
is given by

L 1
�BB ¼ g1

�
��i
1�U5�

�i
1 � 3

4
�N1�U5N

�
1

þ 1

12
�N1��

iU5�
iN�

1 þ
ffiffiffi
3

p
6

�N1��
iU5�

�i
1

�
: (5)

Here and throughout the present Letter, we omit the
Hermite conjugate terms. Note that the relative weights

for N
�
1 and �

�i
1 are fixed in terms of Eqs. (4) without any

dependence on free parameters [11]. In general, it is pos-
sible to insert a chiral invariant operator such as ð�2 þ
�2Þn in Eq. (5). Here, however, we concentrate on the
minimal interactions to reduce the number of free
parameters.
Now, following Ref. [9], we introduce a new set of

spin- 32 baryons (N�
2 , �

�i
2 ) that have the SUð2ÞA transfor-

mation properties opposite in sign to those of ðN�
1 ;�

�i
1 Þ;

ðN�
2 ;�

�i
2 Þ transform as in Eqs. (4) but with 	 ¼ �1.

Owing to this minus sign, the N2rðN2lÞ fields have the
same chiral transformations as N1lðN2rÞ, respectively,
where N1r;l ¼ 1

2 ð1� �5ÞN1, and similarly for N2, �1, and

�2. The interchange of the chiral transformation properties
of the left- and right-handed parts of N1 and N2 is the main
feature of the mirror models [9,13–15]. Keeping this prop-
erty in mind, the diagonal interactions for the mirror bary-
ons takes a form similar to Eq. (5):

L 2
�BB ¼ g2

�
��i
2�U

y
5 �

�i
2 � 3

4
�N2�U

y
5N

�
2

þ 1

12
�N2��

iUy
5 �

iN
�
2 þ

ffiffiffi
3

p
6

�N2��
iUy

5 �
�i
2

�
: (6)

Owing to the interchange of the left- and right-handed

properties of ðN�
1 ;�

�i
1 Þ and ðN�

2 ;�
�i
2 Þ, the following

mass term is allowed:
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L BB ¼ �m0ð ��i
1��

�i
2 þ �N1�N

�
2 Þ: (7)

Combining Eqs. (5)–(7), the quartet scheme in Ref. [9] is
reproduced. These interactions can be obtained also by
using the projection method if one knows suitable baryon
operators for the mirror fields. For instance, using nonlocal
baryon fields

�
0�i
A ¼ @6 Aj

��
��
3=2P

ij
3=2q; (8a)

N
0�
V ¼ @6 V��

��
3=2�5q; (8b)

N0�
A ¼ @6 Ai

��
��
3=2�

iq; (8c)

the mirror fields ðN�
2 ;�

�i
2 Þ are obtained by the same equa-

tions as Eqs. (3) with substitution of the primed fields for
the original fields. Because of the derivatives in Eqs. (8),

ðN�
2 ;�

�i
2 Þ transform as in Eqs. (4) with 	 ¼ �1. Now, the

chiral invariant terms Eqs. (6) and (7) are obtained by the
insertion of the derivatives into Eq. (5).

Next, we consider the interactions between the nucleon
and the spin- 32 baryons, which is new in this work. As in the

above discussion, ðV�; ~A�Þ and ð�; ~�Þ form a chiral scalar
�V� þ i� �A�. Hence we find two chirally invariant

interactions: (i) �NU5½ð@��ÞV� þ ið@��Þ �A��q and

(ii) �Nð@�U5Þð�V� þ i� �A�Þq. Using the irreducible de-

composition, we obtain

L 1
�NB ¼ g3

�2

�
�NU5ði@��iÞ��i

1 þ
ffiffiffi
3

p
2

�NU5ð�5@��

þ i

3
@�� � �ÞN�

1

�
; (9)

L2
�NB ¼ g4

�2

�
�Nð@�U5Þði�iÞ��i

1

þ
ffiffiffi
3

p
2

�Nð@�U5Þð�5�þ i

3
� � �ÞN�

1

�
; (10)

where the dimensional parameter � is introduced to keep
g3 and g4 dimensionless. We ignore higher-order terms

containing only the nucleons �NU5@6 Uy
5N and

�Nð@�U5ÞUy
5��N. We find one chiral invariant operator

for the mirror baryons �N@6 ½ð@��ÞV� þ ið@��Þ �A��q.
We obtain the one-meson interaction

L3
�NB ¼ g5

�

�
�Nði@��iÞ�i

2�

�
ffiffiffi
3

p
2

�N@�ð�5�� 1

3
i� � �ÞN2�

�
; (11)

where one of the derivatives is absorbed into the mirror

fields. Again, we ignore the nucleon term �N@6 Uy
5Nm, where

Nm is another nucleon field having the mirror properties.
Note that the interactions Eqs. (9) and (10) involve two
mesons, while Eq. (11) contains only the single meson
coupling.

Having constructed the Lagrangian with the nucleon and
spin- 32 baryons, we follow Ref. [9] to determine the pa-

rameters g1;2 and m0. After the spontaneous breakdown

SUð2ÞR � SUð2ÞL ! SUð2ÞV , Eqs. (5) and (6) describe the
diagonal mass terms proportional to the chiral condensate
h�i ¼ f�, while Eq. (7) describes the off-diagonal mass

terms between N�
1 and N�

2 and between��i
1 and ��i

2 . Note

that the mixings between N
�
1 ð��i

1 Þ and N
�
2 ð��i

2 Þ occur
only after the mass diagonalization when the so-called
mirror mass m0 is finite [9,14,15]. The masses of the four
baryons are obtained by the diagonalization of the mass
matrices. The results are shown in Table I [16]. With the
corresponding parity (re)definition, the mass eigenstates

are obtained as follows: for the �s, ��i
þ ¼ ð��i

1 þ
��i

2 Þ= ffiffiffi
2

p
, ��i� ¼ �5ð���i

1 þ��i
2 Þ= ffiffiffi

2
p

, and for the N�s,
N�� ¼ �5ð�N

�
1 þ N

�
2 Þ=

ffiffiffi
2

p
, N

�
þ ¼ ðN�

1 þ N
�
2 Þ=

ffiffiffi
2

p
, where

the subscripts � denote the parity [17].
After the spontaneous breaking, the one-pion interac-

tions in Eqs. (9)–(11) are reduced to

L�NB ¼ g�N�þ

�
�Nði@��iÞ��i

þ þ g�N��

�
�Nði�5@��

iÞ��i�

þ g�NN��

�
�Nði�5@�� � �ÞN��

þ g�NN�þ

�
�Nði@�� � �ÞN�

þ; (12a)

where the coupling constants are given by

g�N�� ¼ 1ffiffiffi
2

p
�
ðg5�� g3f�Þ; (12b)

g�NN�� ¼
ffiffiffi
6

p
12�

½g5�� ðg3 þ 3g4Þf��: (12c)

The three coupling constants g3;4;5 are determined from the

one-pion decay widths of the resonances as shown in
Table I. We obtain quantitatively reasonable results for
all the four coupling constants in Eqs. (12). Eliminating
g3;4;5 from Eqs. (12), we obtain a new relation:

ðg�N�þ þ g�N��Þ ¼ 2
ffiffiffi
3

p ðg�NN�� þ g�NN�þÞ; (13)

TABLE I. Masses (second column) and coupling constants
(third column). For masses, we follow Jido et al. [9]. The
experimental values are taken from the Particle Data Group
tables [12]. The experiments determine only the absolute values
of the coupling constants; the positive values are our assumption.

States Masses [MeV] g�NB=� [MeV�1] �B!�N [MeV]

Theor (Exp) Theor (Exp)

�
�i
þ ðP33Þ 1320 (1232) 18 (16) 118

��i� ðD33Þ 1770 (1700) 10 (9.5) 45

N��ðD13Þ 1430 (1520) 6.1 (8.6) 69

N
�
þðP13Þ 1660 (1720) 2.2 (2.4) 30

m0 ¼ 1550 g1 ¼ g2 ¼ 2:4
g3f�=�

2 ¼ 5:6 g4f�=�
2 ¼ �5:0 g5=� ¼ 20
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which is satisfied by the experimental data with a numeri-
cal error of about 20%. Considering the simplicity of the
present description, this is an encouraging result suggest-
ing that the spin- 32 baryons are good candidates for the

chiral partners.
An interesting feature of the present model is its two-

pion contact terms, which are an inevitable consequence of
the chiral invariance. They involve only the g3 and g4,
while g5, which is a leading contribution to the one-pion
couplings, does not contribute to the two-pion couplings.
The two-pion decay of �ð1232Þ is therefore suppressed
compared with the one-pion decay. On top of this, the
derivative coupling causes an additional suppression of
the two-pion decay rate, due to the small final state pion
momentum. Hence we can expect strong suppression of the
two-pion decay of �ð1232Þ. Explicitly, the two-pion con-
tact interactions are given by

L 2�NB ¼ 1ffiffiffi
2

p
�2

�N
i
��

�i
þ � 1ffiffiffi

2
p

�2
�N
i

��5�
�i�

�
ffiffiffi
6

p
12�2

�N���5N
�� þ

ffiffiffi
6

p
12�2

�N��N
�
þ; (14a)

with


i
� ¼ g3ði�5� � �Þði@��iÞ þ g4ði�5@�� � �Þði�iÞ;

(14b)

�� ¼ g3ði�5� � �Þði@�� � �Þ þ g4ði�5@�� � �Þði� � �Þ:
(14c)

Hence we obtain a relation for the 2-� contact terms:

jg2�N�þj ¼ jg2�N��j ¼ 2
ffiffiffi
3

p jg2�NN�þj ¼ 2
ffiffiffi
3

p jg2�NN��j:
(15)

In contrast to the �ð1232Þ case, it is expected that the two-
pion contact terms lead to larger contributions for the other
baryons, because of the larger final state pion momenta.
Especially, the two-pion coupling constants of N�þð��Þ
have the same magnitude as compared with that of
N��ð�þÞ, while the one-pion coupling constants are sup-
pressed by the negative sign in Eqs. (12). This qualitatively
explains the observed enhancement of the branching ration
of the two-pion decays of Nð1720Þ and �ð1700Þ. Because
of the absence of other resonances, such as the � meson
and Nð1440Þ, from the present analysis, we do not consider
this point here in detail.

In summary, we have investigated the properties of
four spin- 32 baryon resonances together with the ground

state nucleon. We have constructed the chiral invariant
Lagrangian with the aid of the spin and isospin projection
formalism for the baryon fields comprised of three-quark
fields. Of course, we can prove the chiral invariance of the
derived interactions directly from the chiral transformation
laws, but the results can be understood from the group-

theoretical point of view. Within the J ¼ 3
2 sector, the

projection formalism reproduces the quartet scheme pro-
posed by Jido et al. [9]. In addition, we derived the minimal
chiral invariant off-diagonal one- and two-meson cou-
plings between the spin- 12 and spin- 32 baryons. We found

that the one-pion couplings describing the spin–12 -
3
2 tran-

sitions are constrained by chiral symmetry via Eq. (13),
couplings which quantitatively agree with the experiment.
Considering the simplicity of our assumptions on the ef-
fective Lagrangian, it is an encouraging result suggesting
that these baryons are chiral partners. We also obtain chiral
two-pion couplings, whose strengths are entirely deter-
mined by the one-pion coupling constants. This enables
us to predict two-pion decays of the resonances that can be
tested in experiments.
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