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We have proposed a novel numerical method to calculate accurately physical quantities of the ground

state using the tensor network wave function in two dimensions. The tensor network wave function is

determined by an iterative projection approach which uses the Trotter-Suzuki decomposition formula of

quantum operators and the singular value decomposition of matrix. The norm of the wave function and the

expectation value of a physical observable are evaluated by a coarse-grain tensor renormalization group

approach. Our method allows a tensor network wave function with a high bond degree of freedom (such as

D ¼ 8) to be handled accurately and efficiently in the thermodynamic limit. For the Heisenberg model on

a honeycomb lattice, our results for the ground state energy and the staggered magnetization agree well

with those obtained by the quantum Monte Carlo and other approaches.

DOI: 10.1103/PhysRevLett.101.090603 PACS numbers: 05.10.Cc, 71.10.�w, 75.10.Jm

The application of the density matrix renormalization
group (DMRG) proposed by White [1] has achieved great
success in one dimension [2,3]. However, in two dimen-
sions, the application of the DMRG in both real and
momentum space [4,5] has been limited only to small
lattices. The error resulting from the DMRG truncation
increases extremely fast with increasing size of lattice. To
resolve this problem, the tensor network state, which is an
extension of the matrix product in one dimension [6], was
proposed [7,8]. In a tensor network state, the local tensors
interact with each other on all directions of the lattice. This
leads to two problems in the treatment of the tensor net-
work state. First, it is difficult to determine accurately all
elements of local tensors by any variational approach since
the total degree of freedom of a local tensor increases
exponentially with the dimension of the tensor. Second, it
is difficult to calculate the expectation value of any physi-
cal observable even if we know the expression of the tensor
network wave function, since the number of summations
over the basis configurations increases exponentially with
the lattice size.

In this Letter, we propose a novel method to handle the
tensor network wave function in two dimensions. We will
show that the tensor network wave function j�i of the
ground state can be accurately determined by applying an
iterative projection approach. This approach is similar to
the time-evolving block decimation method that was used
to determine the matrix product wave function of the
ground state in one dimension [9,10]. Then we will gen-
eralize the classic coarse-grain renormalization group ap-
proach proposed by Levin and Nave [11] to the quantum
system, and use it to calculate the norm of the wave
function and the expectation value of any physical observ-
able. This provides an accurate and efficient tool to deter-
mine the expectation values of physical quantities from the
tensor network wave function of the ground state.

Below we will take the S ¼ 1=2 Heisenberg model on a
honeycomb lattice as an example to show how the method
works. The Hamiltonian is defined by

H ¼ X

hiji
Hij; (1)

Hij ¼ JSiSj � 1
2h½ð�ÞiSi;z þ ð�1ÞjSj;z�; (2)

where hiji stands for summation over nearest neighboring
sites and h is the magnitude of a staggered magnetic field.
It is straightforward to extend the method to other quantum
lattice models with short range interactions in two
dimensions.
As the Hamiltonian is translational invariant, we assume

the tensor network state to have the following form:

j�i ¼ Tr
Y

i2b;j2w

�xi�yi�ziAxiyizi½mi�Bxjyjzi½mj�jmimji:

(3)

A schematic representation of this tensor network state is
shown in Fig. 1. In Eq. (3) b (w) stands for the black
(white) sublattice. mi is the eigenvalue of Siz. Axiyizi½mi�
and Bxjyjzj½mj� are the two three-indexed tensors defined

on the black and white sublattices, respectively. ��i
(� ¼

x; y; z) are positive diagonal matrices (or vectors) of di-
mension D defined on the bond emitted from site i along
the � direction. The subscripts xi, yi, and zi are the integer
bond indices of dimension D (i.e., each running from 1 to
D). A bond links two sites. The two bond indices defined
from the two end points take the same values. For example,
if the bond connecting i and j along the x direction, then
xi ¼ xj. The trace is to sum over all spin configurations

f. . . ; mi; mj; . . .g and over all bond indices.

The ground state wave function can be determined by
applying the projection operator expð��HÞ to an arbitrary
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initial state j�i. In the limit � ! 1, expð��HÞj�i will
converge to the ground state ofH. However, this projection
cannot be done in a single step since terms in H defined by
Eq. (2) do not commute with each other. In real calculation,
we will take a small � and apply this projection operator to
j�i iteratively for many times.

Let us start by dividing the Hamiltonian into three parts

H¼HxþHyþHz; H� ¼ X

i2black

Hi;iþ� ð�¼ x;y;zÞ:

H� (� ¼ x; y; z) contains all the interaction terms along the
� direction only. These terms commute with each other. By
applying the Trotter-Suzuki formula, we can express the
projection operator as

e��H � e��Hze��Hye��Hx þ oð�2Þ: (4)

This means that each iteration of projection can be done
using expð��H�Þ (� ¼ x; y; z) in three separate steps.

In the first step, the projection is done with Hx. As only
two neighboring spins connected by horizontal bonds have
interactions in Hx, the resulting projected wave function
can be expressed as

e��Hx j�i ¼ Tr
Y

i2b;j¼iþx

X

mimj

hm0
im

0
jje�Hij�jmimji�xi�yi�ziAxiyizi½mi�Bxjyjzj½mj�jm0

im
0
ji: (5)

From this, a ðD2dÞ � ðD2dÞ matrix can be defined by

Syizim0
i;yjzjm

0
j
¼ X

mimj

X

x

hm0
im

0
jje�Hij�jmimji�yi�ziAxyizi½mi��xBxyjzj½mj��yj�zj ; (6)

where d ¼ 2 is the total number of states of a S ¼ 1=2
spin. Taking the singular value decomposition for this
matrix, one can further express this S matrix as

Syizimi;yjzjmj
¼ X

x

Uyizimi;x
~�xV

T
x;yjzjmj

; (7)

whereU and V are two unitary matrices and ~�x is a positive
diagonal matrix of dimension D2d.

Next we truncate the basis space by keeping only D

largest singular values of ~�x. Then we set the left ~�x as the
new �x (x ¼ 1; . . . ; D) and update the tensors A and B by
the following formula:

Axyizi½mi� ¼ ��1
yi �

�1
zi Uyizimi;x; (8)

Bxyjzj½mj� ¼ ��1
yj �

�1
zj Vyjzjm

0
j;x
: (9)

A flow chart of the above one-step renormalization of
the wave function is shown in Fig. 2. The next two steps of
projections can be similarly done with Hy and Hz, respec-

tively. This completes one iteration of the projection. By
repeating this iteration procedure many times, an accurate
ground state wave function can then be projected out. This
iteration process is very efficient. The converging speed
depends on the truncation error. In our calculation, we take

� ¼ 10�3 initially and then gradually reduce it to�10�5 to
ensure the convergence of the wave function. The number

FIG. 2. Flow chart of the one-step renormalization of the wave
function. (a) To use expð�Hi;iþx�Þ to act on the tensor network

state. (b) To evaluate the S matrix defined by Eq. (6). (c) To
perform the singular value decomposition for S. (d) To truncate
the basis space of ~�x and to find ~A and ~B with Eqs. (8) and (9),
respectively.

FIG. 1. Schematic representation of a tensor network state on a
honeycomb lattice. The lattice is divided into two sublattices,
represented by the black and white dots, respectively. Each
vertex, on which a spin state is inhibited, is connected with three
neighboring vertices along three directions, labeled by x, y, and
z. On each bond, there is a diagonal matrix (or a vector), ��,
where the subscript � ¼ x, y, or z is a bond index of dimension
D. At each vertex, a tensor representation of the spin state m,
Ax;y;z½m� for the black sublattice or Bx;y;z½m� for the white

sublattice, is defined. A tensor network state is a product of all
these bond vectors and vertex tensors.
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of iterations used in our calculation is generally around
105–106.

Given j�i, the expectation value of a measurable quan-
tity O is defined by

hÔi ¼ h�jÔj�i
h�j�i : (10)

We note that both h�j�i and h�jÔj�i are tensor network
functions. For example,

h�j�i ¼ Tr
Y

i2b;j2w

Ta
xix

0
i;yiy

0
i;ziz

0
i
Tb
xjx

0
j;yjy

0
j;zjz

0
j
; (11)

where the trace is to sum over all bond indices. Both Ta and
Tb are D2 �D2 �D2 tensors. Ta is defined by

Ta
xx0;yy0;zz0 ¼

X

m

ð�x�y�zÞ1=2Axyz½m�Ax0y0z0 ½m�ð�0
x�

0
y�

0
zÞ1=2:

(12)

Tb is similarly defined. Thus we can apply the tensor
renormalization group method proposed by Levin and

Nave [11] to evaluate h�j�i and h�jÔj�i.
To perform the tensor renormalization, we first take two

Ta and Tb on the two ends of a bond and define the
following D4 �D4 matrix:

Mll0;kk0 ¼
X

n

Ta
nl0kT

b
nk0l: (13)

By taking the singular value decomposition, one can also
express this matrix as

Mll0;kk0 ¼
X

n¼1;...;D4

Ull0;n�nVkk0;n; (14)

where U and V are unitary matrices, �n is a positive
defined diagonal matrix of dimension D4. Again we will
truncate the basis space and keep only basis states corre-
sponding to the largest D2 singular values of �. Then the
M matrix can be approximately expressed as

Mll0;kk0 �
X

n¼1;...;D2

Sanll0S
b
nkk0 ; (15)

where

Sanll0 ¼
ffiffiffiffiffiffiffi
�n

p
Ull0;n; (16)

Sbnkk0 ¼
ffiffiffiffiffiffiffi
�n

p
Vkk0;n (17)

are the two vertex tensors defined in the new lattice shown
in Fig. 3(a).
After the above transformation, the lattice structure is

changed [Fig. 3(b)]. Now we replace each smallest triangle
by a single lattice point. This introduces a coarse-grained
honeycomb lattice with two coarse-grained tensors ~Ta and
~Tb defined by

~T a
xyz ¼

X

ijk

SaxikS
a
yjiS

a
zkj (18)

~T b
xyz ¼

X

ijk

SbxikS
b
yjiS

b
zkj: (19)

This coarse-grain transformation reduces the lattice by a
factor of 3 at each iteration. Iterating this procedure, at the
end the honeycomb lattice will eventually be reduced to
having only 6 sites (Fig. 4). One can then trace out all bond
indices to find the norm of the wave function.
The above coarse-grain tensor renormalization group

transformation can be straightforwardly extended to evalu-

ate h�jÔj�i. The difference is that Ta and Tb now may
become site dependent and their definitions are changed.

FIG. 3. Steps of coarse graining. (a) Forming the M matrix by
tracing out the common bond indices of tensors Ta and Tb

defined on the two neighboring sites with Eq. (14), and then
perform the singular value decomposition and find two new
tensors Sa and Sb defined by Eqs. (16) and (17). (b) Tracing
out all common bond indices of Sa tensors (similarly for the Sb

tensors) on a triangle formed by the three closed vertices to form
a coarse-grained tensor ~Ta defined by Eq. (18).

FIG. 4. Tensor renormalization transformation on the honey-
comb lattice. (a) The honeycomb lattice. (b) The deformed
lattice in the tensor renormalization defined by Eqs. (13)–(15).
(c) The squeezed honeycomb lattice after the coarse-grain deci-
mation.

TABLE I. The ground state energy per site E and the staggered
magnetization M in the zero field limit as a function of D.

D E M

3 �0:5365 0.249

4 �0:5456 0.228

5 �0:5488 0.220

6 �0:5513 0.206

7 �0:5490 0.216

8 �0:5506 0.212
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We have applied the above approach to the spin- 12 anti-

ferromagnetic Heisenberg model (2). Both ground state
energy and the staggered magnetization M defined by

MðhÞ ¼ EðhÞ � Eð0Þ
h

(20)

are calculated. In Eq. (20), EðhÞ is the ground state energy
in a finite staggered magnetic field h. The lattice size is
N ¼ 6� 310. The finite size effect is negligible compared
with the truncation error in the tensor renormalization.

Table I shows the ground state energy and the staggered
magnetization as a function of D for the Heisenberg model
with h ¼ 0. The zero field staggered magnetization is
obtained by extrapolating MðhÞ obtained at finite h
(Fig. 5) to the limit h ! 0. With D ¼ 8, we find that the
ground state energy E ¼ �0:5506 and the staggered mag-
netization M ¼ 0:21� 0:01 in the zero field limit. They
agree well with results obtained by other approaches (see
Table II).

In conclusion, we have proposed a novel method to treat
the tensor network wave function of quantum lattice mod-
els in two dimensions. It allows us to determine the tensor
network wave function of the ground state accurately and
efficiently. The ground state energy and the staggered
magnetization of the S ¼ 1=2 Heisenberg model on the
honeycomb lattice obtained with this method are consistent
with those obtained by other methods. By fully considering
the symmetry of the Hamiltonian, we believe that a larger
local tensor withD� 20 can be accessed with our method.

This can further improve the accuracy of results and make
this method even more powerful.
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FIG. 5 (color online). The staggered magnetization MðhÞ as a
function of the staggered magnetic field, at different D.

TABLE II. Comparison of our results with those obtained by
other approaches for the ground state energy per site E and the
staggered magnetizationM of the Heisenberg model with h ¼ 0.

Method E M

Spin wave [12] �0:5489 0.24

Series expansion [13] �0:5443 0.27

Monte Carlo [14] �0:5450 0.22

Ours D ¼ 8 �0:5506 0:21� 0:01
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