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Why do we not experience a violation of macroscopic realism in everyday life. Normally, no violation
can be seen either because of decoherence or the restriction of coarse-grained measurements, transforming
the time evolution of any quantum state into a classical time evolution of a statistical mixture. We find the
sufficient condition for these classical evolutions for spin systems under coarse-grained measurements.
However, there exist ‘‘nonclassical’’ Hamiltonians whose time evolution cannot be understood classically,
although at every instant of time the quantum state appears as a classical mixture. We suggest that such
Hamiltonians are unlikely to be realized in nature because of their high computational complexity.
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The laws of quantum physics are in conflict with a
classical world, in particular, with local and macroscopic
realism as characterized by the violation of the Bell [1] and
Leggett-Garg [2,3] inequalities, respectively. While Bell’s
theorem is a well investigated area of research, hardly any
analysis has been undertaken to understand the key ingre-
dients for the violation of macroscopic realism (macro-
realism). Is it the initial state, the Hamiltonian or the
measurement observables which have to be ‘‘quantum’’
to see a deviation from classical physics?

Macrorealism is defined by the conjunction of three
postulates [3]: ‘‘(1) Macrorealism per se, A macroscopic
object which has available to it two or more macroscopi-
cally distinct states is at any given time in a definite one of
those states. (2) Noninvasive measurability. It is possible in
principle to determine which of these states the system is in
without any effect on the state itself or on the subsequent
system dynamics. (3) Induction. The properties of ensem-
bles are determined exclusively by initial conditions (and
in particular not by final conditions).’’ These assumptions
allow us to derive Leggett-Garg inequalities.

In this Letter we first show that a violation of the
Leggett-Garg inequality itself is possible for arbitrary
Hamiltonians given the ability to distinguish consecutive
eigenstates. This is understandable because it is generally
accepted that ‘‘microscopically distinct states’’ do not have
an objective existence. For testing macrorealism one needs
to apply the Leggett-Garg definition referring to macro-
scopically distinct states. In our everyday life, to experi-
ence macrorealism it is usually sufficient to employ a
certain type of decoherence (where the system is isolated
[4] and only at the times of measurement the environment
makes a premeasurement on the apparatus [5]) or the
restriction of coarse-grained measurements [6–9]. While
both mechanisms transform the quantum state at every
instance of time into a classical mixture, we demonstrate
that there are nonclassical Hamiltonians for which the time
evolution of this mixture cannot be understood classically,
leading to a violation of macrorealism. We find the neces-

sary condition for nonclassical evolutions and argue why
they are unlikely to be realized in nature.

Consider a physical system and a quantity A, which
whenever measured is found to take one of the values �1
only. Now perform a series of runs starting from identical
initial conditions (at time t � 0) such that on the first set of
runs A is measured only at times t1 and t2, only at t2 and t3
on the second, and at t1 and t3 on the third �0 � t1 < t2 <
t3�. Introducing temporal correlation functions Cij �
hA�ti�A�tj�i, any macrorealistic theory predicts Leggett-
Garg inequalities, for instance of the Wigner type [10]:

 K � C12 � C23 � C13 � 1: (1)

Any nontrivial (time-independent) Hamiltonian Ĥ leads
to a violation of this inequality. We extend the approach of
Peres in Ref. [6] and look at the ‘‘survival probability’’ of
the system’s initial state at time t � 0. This state be de-
noted as j �0�i � j 0i (which must not be an energy
eigenstate) and, without measurements, it evolves to
j �t�i � exp��iĤt=@�j 0i according to the Schrödinger
equation. Our dichotomic observable is Â � 2j 0ih 0j �
1; i.e., we ask whether the system is (still) in the state j 0i
(outcome � � �1) or not (outcome � � �1). The tem-
poral correlations Cij can be written as Cij � pi�qj�ji� �
pi�qj�ji� � pi�qj�ji� � pi�qj�ji�, where pi� (pi�) is
the probability for measuring � (�) at ti and qjljik is the
probability for measuring l at tj given that k was measured
at ti (k, l � �, �). For simplicity we choose t1 � 0 and
equidistant times �t � t2 � t1 � t3 � t2. Then the corre-
lation C12 is given by C12 � 2p��t� � 1, where p�t� �
jh 0j �t�ij

2 is the (survival) probability to find j 0i given
the state j �t�i. Analogously, we find C13 � 2p�2�t� � 1
and C23. Plugging everything into (1), one ends up with

 K � 4p��t�
���������������
p�2�t�

q
cos�� 4p�2�t� � 1 � 1; (2)

where � � 2�� � and �, � are the phases in
h 0j �t2�i �

������������
p��t�

p
ei�, h 0j �t3�i �

���������������
p�2�t�

p
ei�.
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Independent of the system’s dimension, it is sufficient to
consider as the initial state a superposition of two energy
eigenstates ju1i and ju2i with energy eigenvalues E1 and
E2: j 0i � �ju1i � ju2i�=

���
2
p

. Inequality (2) becomes K �
2 cos��E�t

@
� � cos�2�E�t

@
� � 1, with �E � E2 � E1 the en-

ergy difference of the two levels, and a violation is always
possible. The left-hand side reaches K � 1:5 for �t � �@

3�E
and �t � 5�@

3�E and in 2�@
�E periods thereof.

Why then do we not see a violation of the Leggett-Garg
inequality in everyday life? The usual answer is that this is
either due to decoherence or due to the fact that the
resolution of our everyday measurements is not sharp,
making it impossible to project onto individual states and
hence making it impossible to see the above demonstrated
violation that is always present for microstates.

For testing macrorealism—i.e., testing the Leggett-
Garg inequality under the restriction of coarse-grained
measurements—we consider a spin-j system (with j	
1) as a model example. Any spin-j state can be written in
the quasidiagonal form �̂�

RR
P���j�ih�jd2� with d2�

the solid angle element and P a normalized and not nec-
essarily positive real function [11]. The spin coherent
states j�i � j#;’i, with # and ’ the polar and azimuthal
angle, are the eigenstates with maximal eigenvalue of a
spin operator pointing into the direction � � �#;’� [12]:
Ĵ�j�i � jj�i in units where @ � 1. In coarse-grained
measurements our resolution is not able to resolve individ-
ual eigenvalues m of a spin component, say the z compo-
nent Ĵz, but bunches together �m neighboring [13]
outcomes into ‘‘slots’’ �m, where the measurement coarse-
ness is much larger than the intrinsic uncertainty of coher-
ent states, i.e., �m	

���
j
p

[9].
The question arises whether it is problematic to use

coarse-grained von Neumann measurements of the formP
m2f �mgjmihmj, where jmi are the Ĵz eigenstates, as ‘‘clas-

sical measurements.’’ In contrast to the positive operator
value measure (POVM), they have sharp edges and could
violate the Leggett-Garg inequality by distinguishing with
certainty between microstates at two sides of a slot border.
Therefore, we model our coarse-grained Ĵz measurements
as belonging to a (spin coherent state) POVM, where the
element corresponding to the outcome �m is represented by

 P̂ �m �
2j� 1

4�

ZZ
� �m

j�ih�jd2�: (3)

Here, � �m is the angular region of polar angular size
�� �m 
�m=j	 1=

���
j
p

whose projection onto the z axis
corresponds to the slot �m. The POVM elements are over-
lapping at the slot borders over the angular size 
1=

���
j
p

which is small compared to the angular slot size �� �m.
In the basis of Ĵz eigenstates P̂ �m�

Pj
k��j

2j�1
4� �RR

� �m
jhkj�ij2d2�jkihkj is diagonal where jhkj�ij2 �

� 2j
j�k� cos2�j�k�#

2 sin2�j�k�#
2 .

The probability for getting the particular outcome �m is
given by w �m�Tr��̂P̂ �m �

2j�1
4�

RR
h�j�̂P̂ �mj�id2�. This

probability can (exactly) be computed via integration of
an ensemble of classical spins over the region � �m, i.e.
w �m�

RR
� �m
Q���d2�, with a positive probability distribu-

tion (the well-known Q function [14]):

 Q��� �
2j� 1

4�
h�j�̂j�i: (4)

That shows that under fuzzy measurements any quantum
state allows a classical description (i.e., a hidden variable
model). This is macrorealism per se.

Upon a coarse-grained measurement with outcome �m,
the state �̂ is reduced to �̂ �m � M̂ �m�̂M̂ �m=w �m where we
have chosen a particular (optimal [6]) implementation of
the POVM with the Hermitian Kraus operators M̂ �m�

M̂y�m�
Pj
k��j�

2j�1
4�

RR
� �m
jhkj�ij2d2��1=2jkihkj satisfying

M̂2
�m � P̂ �m. We note that, independently of the implemen-

tation, the P̂ �m (and the Kraus operators) behave almost as
projectors for all states j�i except for those near a slot
border. In a proper classical limit (

���
j
p
=�m! 0) the rela-

tive weight of these � compared to the whole sphere
surface becomes vanishingly small. The Q distribution
before the measurement is the (weighted) mixture of the
Q distributions Q �m��� �

2j�1
4� h�j�̂ �mj�i of the possible

reduced states

 Q��� �
X

�m

w �mQ �m���: (5)

The approximate sign ‘‘�’’ reflects that, depending
on the density matrix �̂ �

P
n
P
n0 cnn0 jnihn

0j, this
relationship may only approximately hold for the set
of those � � �#;’� near a slot border. In detail
Eq. (5) reads 2j�1

4�

P
n
P
n0 cnn0 h�jnihn

0j�i � 2j�1
4� �P

n
P
n0 cnn0 �

P
�m

��������������������������
g �m�n�g �m�n

0�
p

h�jnihn0j�i with g �m�k� �
2j�1

4�

RR
� �m
jhkj�ij2d2�, which is smaller or equal to 1.

Deviations only occur if n, n0 (n0 � n) and j cos# are all
within a distance of order

���
j
p

to each other and to a slot
border. Even in the case of a spin coherent state exactly on
a slot border, the overlap between the left and right-hand
side of Eq. (5) is � 0:997 (independent of j), where the
overlap of two probability distributions f and g is defined
as

RR ���������������������
f���g���

p
d2�2 �0;1. Equation (5) thus shows

that a fuzzy measurement can be understood classically
as reducing the previous ignorance about predetermined
properties of the spin system [9].

Consider the initial distribution of classical spins,
Q��; t0�, corresponding to an initial quantum state �̂�t0�.
We first compute the Q distribution of the state �̂�tj� for an
undisturbed evolution without measurement until some
time tj, Q��; tj� �

2j�1
4� h�j�̂�tj�j�i. This has to be com-

pared with the mixture of all possible reduced distributions
upon measurement at a time ti (t0 � ti < tj) with outcomes
�m which evolved to tj, denoted as Q �m;ti��; tj� �

2j�1
4� �

h�jÛtj�ti M̂ �m�̂�ti�M̂ �mÛ
y
tj�ti j�i=w �m;ti with w �m;ti�

Tr��̂�ti�P̂ �m and Ût � exp��iĤt� the time evolution op-
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erator. The system evolves macrorealistically if these two
quantities coincide for all ti and tj,

 Q��; tj� �
X

�m

w �m;tiQ �m;ti��; tj�: (6)

This is noninvasive measurability together with induction.
In a dichotomic scenario the outcomes � and � corre-

spond to finding the spin system in one out of only two
slots �m � �1. This is represented by a measurement of
two complementary regions �� and �� (for instance the
northern and southern hemisphere in a ‘‘which hemi-
sphere’’ measurement). Then, e.g., the probability for
measuring � at t3 if � was measured at t1 is given by
q3�j1� �

RR
��
Q�;t1��; t3�d

2� with Q�;t1��; t3� the
Q-distribution of the state which was reduced at t1 with
outcome� and evolved to t3. If condition (6) is satisfied, it
implies that the probabilities can be decomposed into
‘‘classical paths.’’ This means that, e.g., q3�j1� is just the
sum of the two possible paths via � and � at t2: q3�j1� �
q2�j1�q3�j2�;1� � q2�j1�q3�j2�;1�, where q3�j2�;1� de-
notes the probability to measure � at t3 given that � was
measured at t1 and � at t2. Thus, Eq. (6) allows to derive
Leggett-Garg inequalities such as (1).

We can now establish the sufficient condition for macro-
realism that holds even for isolated systems, namely,

 P̂ �mÛtj�i �
�
Ûtj�i for one �m;
0 for all the others;

(7)

for all t and �, allowing deviations at slot borders. This
means that Ût does not produce superpositions of
macroscopically distinct states and therefore P̂ �m, and
hence M̂ �m, quasi behave as projectors. Equation (7) im-
plies h�jÛtj�ti �̂�ti�Û

y
tj�ti j�i �

P
�mh�jÛtj�tiM̂ �m�̂�ti� �

M̂ �mÛ
y
tj�ti j�i which directly leads to Eq. (6). Thus,

Eq. (7) ! Eq. (6) ! macrorealism.
We denote those Hamiltonians for which Eq. (7) is

satisfied under coarse-grained measurements as classical.
An example is the rotation, say Ĥ � !Ĵx, with Ĵx the spin
x component and ! the angular precession frequency,
which satisfies Eq. (7) and moreover allows a Newtonian
description of the time evolution [9]. But can one find
nonclassical Hamiltonians violating macrorealism despite
coarse-grained measurements? The necessary condition
for this is that the Hamiltonian builds up coherences be-
tween states belonging to different slots. One example is

 Ĥ � i!�j�jih�jj � j�jih�jj�; (8)

which, given the initial state j��0�i � j�ji, produces a
time-dependent Schrödinger catlike superposition [15] of
two distant (orthogonal) coherent states j�ji and j�ji:

 j��t�i � cos�!t�j�ji � sin�!t�j�ji: (9)

Under fuzzy measurements or premeasurement decoher-
ence [5], the state (9) appears like a statistical mixture at
every instance of time:

 �̂ mix�t�� cos2�!t�j�jih�jj�sin2�!t�j�jih�jj: (10)

While the two states �̂sup�t� � j��t�ih��t�j and �̂mix�t�,
having different P functions (Fig. 1), can be distinguished
by sharp measurements, they are equivalent on the coarse-
grained level. The Q distributions, Qsup for �̂sup�t� and
Qmix for �̂mix�t�, are given by Eq. (4). The coherence terms
stemming from �̂sup�t� are of the form h�j�jih�jj�i and
vanish exponentially fast with the spin length j for all �.
For j	 1 the Q distributions are practically identical,
i.e., Qsup��; t� � Qmix��; t� �

2j�1
4� �cos2�!t�cos4j��1

2 � �

sin2�!t�cos4j��2

2 �, where �1 � # (�2 � �� #) is the
angle between � � �#;’� and �z (�z). The P and Q
functions of �̂sup and �̂mix at t � �

4! are shown in Fig. 1 for
a certain choice of parameters. Using a dichotomic ‘‘which
hemisphere’’ measurement, the temporal correlation func-
tion reads Cij � cos�!�tj � ti�. The system effectively
behaves as a spin- 1

2 particle and violates macrorealism.
In agreement, Eqs. (6) and (7) are not fulfilled. To get
macrorealism one would have to coarse-grain always those
states which are connected by the Hamiltonian and not
necessarily in real space. Such a coarse-graining would
lead to a different kind of macrorealistic physics than the
classical laws we know, bringing systems through space
and time continuously.

Finally, we suggest a possible reason why nonclassical
evolutions might be unlikely to be realized by nature: They
either require Hamiltonians with many-particle interac-
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FIG. 1 (color online). Top left: The wildly oscillating P func-
tion Psup at time t � �

4! of the equal-weight superposition (9) of
two opposite spin coherent states j�ji and j�ji for spin length
j � 10, plotted in a rotated coordinate system in which j�ji �
j �4 ;

3�
2 i. Top right: The P function Pmix of the corresponding sta-

tistical mixture (10). Bottom: In everyday life the angular mea-
surement resolution is much weaker than 1=

���
j
p

. Then we cannot
distinguish anymore between the superposition state and the
classical mixture, as both lead to the same (positive) Q distribu-
tion Qsup � Qmix. Nevertheless, the time evolution of such a
mixture can violate macrorealism even under classical (coarse-
grained) measurements.
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tions or a specific sequence of a large number of computa-
tional steps if only few-particle interactions are used
(‘‘high computational complexity’’). Both cases intuitively
seem to be of very low probability to happen spontane-
ously. Consider our spin-j as a macroscopic ensemble of N
spin- 1

2 particles (i.e., qubits). For violating macrorealism it
is necessary to build up superpositions of two macroscopi-
cally distinct coherent states [16]. Without loss of general-
ity we consider again the particular Hamiltonian (8). If j1i
and j0i denote the individual qubit states ‘‘up’’ and
‘‘down’’ along z, then j11 . . . 1i and j00 . . . 0i form the
coherent states j�ji and j�ji. The Hamiltonian represents
N-particle interactions of the form Ĥ � i

2 ��̂
�N
� � �̂

�N
� �,

where �̂� � �̂x � i�̂y with �̂x and �̂y the Pauli operators.
Alternatively, one can simulate the evolution governed by
this many-body interaction by a series of (in nature typi-
cally appearing) few-qubit interactions (gates), using the
methods of quantum computation science [17]. The task is
to simulate

 j11 . . . 1i ! cos�!t�j11 . . . 1i � sin�!t�j00 . . . 0i: (11)

Assuming sequential qubit interactions, we start from the
state j11 . . . 1i and rotate the first qubit 1 by a small angle
!�t: j1i1 ! cos�!�t�j1i1 � sin�!�t�j0i1. Then we per-
form a controlled-not (c-not) gate between this qubit 1 and
qubit 2 such that jxi1jyi2 ! jxi1jx � yi2 (x; y � 0; 1).
Afterwards c-nots between qubits are performed such
that all other qubits are reached (Fig. 2). This procedure
brings us to the state at time �t: j11 . . . 1i !
cos�!�t�j11 . . . 1i � sin�!�t�j00 . . . 0i. To simulate the
next time interval �t, we have to undo all the c-nots, rotate
the first qubit again by !�t, and make all the c-nots again,
leading to the correct state at time 2�t. With this proce-
dure we get a sequence of states, simulating the evolu-
tion (11). One needsO�N� computational steps per interval
�t [18]. Note for comparison that the rotation (say around
x), Ĥ � !

2

PN
k�1 �̂

�k�
x with k labeling the qubits, does not

require interations between qubits. The simulation of an
interval �t, j111 . . .i ! �cos�!�t�j1i � sin�!�t�j0i�N ,
can be achieved in a single global transformation on all
qubits simultaneously. While both evolutions are rotations
in Hilbert space (and require only polynomial resources),
the simulation of the ‘‘nonclassical’’ cosine-law between
states that are distant in real space is—for macroscopically
large N—computationally much more complex than the
‘‘classical’’ rotation in real space [19].

Conclusion.—Under sharp measurements any nontrivial
Hamiltonian is in conflict with a classical time evolution.
Under coarse-grained measurements any quantum spin
state appears as a statistical mixture of spins at every
instance of time. For classical Hamiltonians these mixtures
have a classical time evolution and satisfy macrorealism.
Nonclassical Hamiltonians build up quantum coherences
between macroscopically distinct states, leading to a vio-
lation of macrorealism. Such Hamiltonians, however, re-
quire interactions between a large number of particles or
are computationally much more complex than classical
Hamiltonians, which might be the reason why they are
unlikely to appear in nature.
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