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We carry out first-principles calculations of the nonlinear dielectric response of short-period ferroelec-
tric superlattices. We compute and store not only the total polarization, but also the Wannier-based
polarizations of individual atomic layers, as a function of the electric displacement field, and use this
information to construct a model capable of predicting the nonlinear dielectric response of an arbitrary
superlattice sequence. We demonstrate the successful application of our approach to superlattices
composed of SrTiO3, CaTiO3, and BaTiO3 layers.
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The development of advanced methods for layer-by-
layer epitaxial growth of multicomponent perovskite su-
perlattice structures has generated excitement [1], both
because of the intriguing materials physics that comes
into play and because of potential applications in non-
volatile ferroelectric memories, piezoactuators and sen-
sors, and magnetoelectric devices [2]. To guide experi-
mental exploration of this greatly expanded class of mate-
rials, there is a critical need for atomic-scale understanding
and modeling of key structural and functional properties,
particularly polarization and dielectric response.

First-principles methods have allowed for the direct
quantitative computation of such material-specific infor-
mation for representative perovskite superlattices [3,4].
However, such calculations are limited to relatively
short-period superlattices, of the order of 10 unit cells.
First-principles modeling can extend our theoretical capa-
bility so that one can make predictions about arbitrary
stacking sequences and elucidate the physics behind the
novel behavior of superlattices. In particular, substantial
progress has recently been made in isolating and studying
the effects of the epitaxial strain on film structure, polar-
ization, and piezoelectric properties [5,6].

It is clear, however, that it is electrostatic effects that
dominate the physics of superlattices built from ferroelec-
tric (e.g., BaTiO3) and incipient ferroelectric (e.g., SrTiO3)
constituents. In previous first-principles models, these ef-
fects were included in an approximate way, either by
describing the layers in terms of their bulk linear dielectric
properties [3], or by imposing a constant-polarization
layer-to-layer constraint that only roughly captures the
effects of the internal electric fields [7]. Furthermore,
most previous first-principles calculations, using the peri-
odic boundary conditions implicit in ordinary implemen-
tations, give results only for zero applied electric field.
Since much of the interest in perovskite superlattices lies
in their use in capacitor structures whose performance

relies on their nonlinear dielectric behavior under bias
voltage, a more fundamental methodology capable of cap-
turing such effects is urgently needed.

In this Letter, we present a rigorous first-principles treat-
ment allowing computation and modeling of the nonzero
electric-field response of perovskite oxide superlattices.
Our approach is based on a recently developed Wannier-
based formulation of the layer polarizations in perovskite
superlattices [8] in combination with methods for treating
insulators in finite electric fields [9–12]. Crucially, we
choose to work at fixed electric displacement field [13],
and show that this gives a clean separation between long-
range Coulomb interactions and short-range interfacial
effects. As we demonstrate through application to super-
lattices composed of three ABO3 perovskite constituents,
the resulting model yields, for arbitrary stacking sequen-
ces, quantitative predictions of polarization and nonlinear
dielectric response with ab initio accuracy, thus enabling
the theory-driven search of the full range of superlattice
sequences for novel or optimized properties.

The construction of our model begins with the decom-
position of the superlattice into atomic layers, specifically
into AO and BO2 layers alternating along [001]. The
individual layer polarizations (LP) for each AO and BO2

layer j are computed using the Wannier-based method of
Ref. [8], and recorded as functions pj�D� of the displace-
ment field D using a constrained-D first-principles imple-
mentation [13]. This choice is appropriate because (i) D is
constant throughout the supercell (r �D � 4��free � 0),
while the local macroscopic E and P generally vary, and
(ii) imposing constant-D electrical boundary conditions
has the virtue of making the force-constant matrix of the
quasi-one-dimensional superlattice short-ranged in real-
space. This ‘‘locality principle’’ implies that one may
expect the pj�D� to depend only on the local compositional
environment comprising the layer itself and few nearby
neighbors. For any given superlattice, the total polariza-
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tion, which is a quantity of central interest, is given by
P�D� � c�D��1P

jpj�D� where c�D� is the relaxed super-
lattice periodicity. It is also straightforward to obtain the
electric equation of state in other forms, e.g., D�P� by
numerical inversion, and E�P� � D�P� � 4�P.

We demonstrate the method through application to
superlattices composed of an arbitrary sequence of
SrTiO3, BaTiO3, and CaTiO3 layers, grown in the (001)
direction with an in-plane lattice constant a0 �
7:275 bohr, our theoretical equilibrium lattice constant of
bulk SrTiO3. We assume 1� 1 in-plane periodicity and
tetragonal P4mm symmetry, thus neglecting possible in-
termixing, nanodomain formation, or the appearance of
antiferroelectric or octahedral-tilting distortions.
Consistent with the P4mm symmetry, D is taken along
the z axis, ranging in steps from �0:32 to 0:32 C=m2.

First-principles calculations to optimize the structure for
fixedD [13] and to obtain the layer polarizations pj�D� and
lattice constants c�D� were performed on a database of
superlattices using the LAUTREC code package, which im-
plements plane-wave calculations in the projector
augmented-wave framework [14] in the local-density ap-
proximation [15]. The polarization and its coupling to the
electric field is handled by an efficient real-space Wannier
formulation [12]. We used a plane-wave energy cutoff of
40 Ry and a 6� 6� 2 Monkhorst-Pack k mesh. The
database of superlattice structures contains all one- and
two-component period-4 supercells (BBBB, SSSS, CCCC,
BBBS, BBSS, BSBS, BSSS, CCCS, CCSS, CSCS, CSSS,
BBBC, BBCC, BCBC, BCCC), and one three-component
superlattice SSBC, where C, S, and B refer to CaTiO3,
SrTiO3, and BaTiO3 layers, respectively.

Representative pj�D� curves are presented in Fig. 1. It is
striking that the LP curves separate, as expected from our
locality principle, into clusters depending on the nearest-
layer chemical environment (color-coded for comparison).
However, the differences among the curves within a cluster
are still too large to neglect, especially for TiO2 layers,
indicating that an accurate model must include further-
neighbor interactions as well. The effects of local inversion
symmetry breaking are also clearly visible. For example, a
BaO layer in the middle of a CBB sequence has a large and
positive LP even at D � 0. Smaller shifts arise from the
second-neighbor environment, e.g., for the central TiO2

layer in a BBSS sequence.
We now introduce a cluster expansion [16] for the

environment dependence of the pl�fsg;D� as

 

pl�fsg� � J0 �
X

i

�Jl;isi � J0l;is
2
i � �

X

ij

�Jl;ijsisj � J0l;ijsis
2
j

� J00l;ijs
2
i s

2
j � �

X

ijk

Jl;ijksisjsk � � � � ; (1)

where the J are D-dependent effective cluster interactions
(ECI) to be determined from fitting to the first-principles
database. We choose ‘‘spin’’ variables si � �1, 0, and 1 to

identify AO layer i as CaO, SrO, and BaO, respectively, to
reflect the fact that Sr is midway between Ca and Ba in the
periodic table. Thus, insofar as Sr acts like an average of
Ca and Ba atoms, each appearance of a squared spin
variable s2 in a term of the cluster expansion makes it
more likely that the term can be neglected.

We therefore approached the truncation and fitting of the
model of Eq. (1) with three principles in mind: (i) the
importance of an n-body term is expected to decrease
rapidly with n; (ii) the dependence of pl on si should decay
rapidly with the distance between layers l and i; and
(iii) coefficients with prime superscripts, corresponding
to ‘‘higher-level’’ spin variables s2, should be less impor-
tant than those without.

Translation and spatial-inversion symmetry imply
that Jl;l�m�D� � �Jl;l�m��D�, Jl;l�m;l�n�D� �
�Jl;l�m;l�n��D�, etc., independent of l. It is therefore
natural to define J m � �Jl;l�m � Jl;l�m�=2 and ~J m �

�Jl;l�m � Jl;l�m�=2, and similarly for two-body and higher
terms. Correspondingly, we separate Eq. (1) into parts
p���AO �D� and p���TiO2

�D� that are odd in D, and parts

p���AO �D� and p���TiO2
�D� that are even in D, reflecting the

inversion-symmetry-conserving and inversion-symmetry-
breaking characters of the local environment, respectively.
To give a sense of the form of the resulting expressions, the
odd part for AO layers becomes

FIG. 1 (color online). Dependence of layer polarizations on
chemical environment for (a) BaO planes (relative to a BaO
plane in bulk BaTiO3) and (b) TiO2 planes (relative to an
average of TiO2 planes in bulk BaTiO3 and SrTiO3). C, S, B,
and T refer to CaO, SrO, BaO, and TiO2 layers, respectively.
First-principles results and model fittings are denoted by sym-
bols and solid lines, respectively.
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p���AO � J � J 0s0 � J 00s
2
0 � J 1�s�1 � s1� � J 01�s

2
�1
� s2

1�

� J 2�s�2 � s2� � J 01�s�1s0 � s0s1�

� J 02�s�2s0 � s0s2� � J �11s�1s1

� J 12�s�2s�1 � s1s2�; (2)

where �n � �n and layer 0 is the one whose LP is being
expanded. Similar expressions for p���AO , p���TiO2

, and p���TiO2

are given in the supplementary material [17]. The supercell
lattice constant c�D� is correspondingly expanded as

 c �
X

j

�C1 � C2sj � C3s2
j � C4sjsj�1�; (3)

where C1�D�, C2�D�, and C3�D� assign to each layer its bulk
c�D�, and only the C4�D� term includes true superlattice
effects. The J �D� and C�D� parameters are expressed as
fifth- and fourth-order Taylor expansions in D, respec-
tively, with the Taylor coefficients obtained by fitting to
the first-principles calculations of pj�D� and c�D� for
superlattices in the database.

The choice of terms to include in Eq. (2) and in the
corresponding expressions for p���AO , p���TiO2

, and p���TiO2
[17]

have been obtained using linear regression techniques. The
linear-in-D coefficients of the ECIs in Eq. (2) are presented
in Table I, confirming our expectation that terms of higher
body, longer range, and higher level tend to be less im-
portant. Tables listing values of all of the ECI coefficients
are provided in the supplementary material [17].

The quality of the fit is excellent; the overall rms error in
pj�D� values relative to first-principles results is 2�
10�14 C=m for structures in the database. This is illustrated
in Fig. 1, where the solid lines representing the fitted
functions can be seen to pass quite accurately through
the first-principles symbols. The quality of the fit is similar
for other cases, not plotted.

The model can now be used to predict the nonlinear
dielectric and piezoelectric properties of arbitrary super-
lattice sequences. To illustrate the quality of the fit for
supercell configurations that were not included in the fit,
we compare in Fig. 2 the first-principles P�E� curves with
the model fits for the tricolor 1S1B2C supercell. The P�E�
curves are seen to be in excellent agreement. The arrows in
Fig. 2 indicate E � 0 solutions corresponding to P � �Ps
in the preferred (stable) phase, P � Punst at the unstable

saddle point, and P � Pmeta in the metastable phase. Note
that jPsj � jPmetaj and Punst � 0 because the superlattice
has broken inversion symmetry. The model predicts Ps,
Punst, and Pmeta values of �0:19, 0.04, and 0:16 C=m2, to
be compared with direct first-principles values of �0:20,
0.04, and 0:16 C=m2, respectively. While the inversion-
symmetry-breaking effects are subtle, they are critical for
tuning certain ferroelectric properties [18,19], and it is
gratifying that they are obtained accurately by our model.

To demonstrate the ability of our model to predict prop-
erties of long-period superlattices that would be impracti-
cal for direct first-principles calculations, we present our
model predictions for nSnBnC superlattices in Table II.
Because of the broken inversion symmetry, one polariza-
tion direction is favored, with a different magnitude, over
the other. The polarizations approach the bulk value of
0:274 C=m2 for large n, but with decreasing n we find a
progressive suppression of the polarization and an en-
hancement of the asymmetry until, at n � 1, the system
becomes paraelectric, with a single minimum. These ef-
fects are also evident in the static dielectric response curves
(including the piezoelectrically mediated component)
shown in Fig. 3, obtained by plotting �dE=dD��1 vs E�D�
parametrically as functions of D. It is clear that the curves
lack reflection symmetry about the vertical axis, and the
system is seen to cross from ferroelectric to paraelectric
behavior between n � 2 and n � 1.

To gain more insight into interface effects in these
superlattices, we can characterize each of the six kinds of
interfaces by an interface dipole, extracted from our first-
principles model as follows. Using S=B as an example, we

TABLE I. Fitted linear-in-D term of effective cluster interac-
tions for AO layers as defined in Eq. (2).

ECI Value ECI Value

Zero body J 2.2771
One body J 0 0.1113 J 00 0.0819

J 1 0.0034 J 01 0.0007
J 2 �0:0018

Two body J 01 0.0197 J 02 0.0031
J �11 0.0026 J 12 0.0013

FIG. 2 (color online). Model prediction (solid lines) and first-
principles calculations (symbols) of E vs P for 1S1B2C super-
lattice.

TABLE II. Predicted magnitude of polarization (C=m2) for
preferred (Ps) and metastable (Pmeta) polarization states in
nSnBnC superlattices.

n � 1 n � 2 n � 4 n � 8 n � 1

Ps �0:040 �0:198 �0:250 �0:267 �0:274
Pmeta 0.178 0.237 0.262 0.274
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imagine an infinite stack . . . SSSBBB . . . with one inter-
face, and define pint�D� �

P
ipi�D� � p

�0�
i �D�, where i

runs over AO and TiO2 layers, pi�D� is the actual layer
polarization predicted by our model, and p�0�i �D� is the
polarization of that layer type in its own bulk environment.
[For the central TiO2 layer, p�0��D� is the average of the
bulk S and B values.] Because of the short-range nature of
the model, the sum only needs to run over a few layers near
the interface.

The resulting pint�D� curves are presented in Fig. 4.
First, note that the curves tend to have a negative slope at
D � 0 and thus contribute an interface dipole of opposite
sign toD for smallD; this reflects the fact that the presence
of interfaces tends to suppress the ferroelectricity, as was
also evident in Table II and Fig. 3. Second, each pair such
as BS and SB are related by the symmetry pBSint �D� �
�pSBint ��D� required by the condition that the overall
P�D� of a bicolor nSnB superlattice must be odd in D.
Third, the inversion symmetry breaking, relevant to tri-
color superlattices such as nBnSnC, is evident in the fail-
ure of the pBSint �D� � p

SC
int �D� � p

CB
int �D� curve to pass

through the origin in the inset of Fig. 4.
The utility of the interface dipole concept is that, for any

superlattice in which the interfaces are never separated by
less than three unit cells (as determined by the range of our
model), P�D� can be calculated just by summing the bulk
contribution for each layer and then adding the contribu-
tion from each interface. This prescription yields a sim-
plified but equivalent model that can be used in such cases.

Thus, for example, the inversion-symmetry-breaking ef-
fects in lBmSnC superlattices are captured exactly by the
simplified prescription as long as l;m; n � 3.

In summary, we have shown how a model can be ex-
tracted from first-principles calculations on short-period
superlattices and used to make quantitatively accurate
predictions of nonlinear dielectric and piezoelectric re-
sponses over a range of applied fields for arbitrary super-
lattice sequences. The treatment of electrostatic effects is
rigorous, a key aspect being the choice of the displacement
field as the fundamental electrical variable so as to keep
interlayer interactions short-ranged. The approach can be
straightforwardly generalized to include dependence on
epitaxial strain. Such an approach can play an important
role in enabling the design of multifunctional ferroelectric
superlattices with desired polarization, piezoelectric, or
dielectric responses.
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[9] I. Souza, J. Íñiguez, and D. Vanderbilt, Phys. Rev. Lett. 89,

117602 (2002).
[10] P. Umari and A. Pasquarello, Phys. Rev. Lett. 89, 157602

(2002).
[11] O. Diéguez and D. Vanderbilt, Phys. Rev. Lett. 96, 056401

(2006).
[12] M. Stengel and N. A. Spaldin, Phys. Rev. B 75, 205121

(2007).
[13] M. Stengel, N. A. Spaldin, and D. Vanderbilt (to be

published).
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FIG. 3 (color online). Dielectric response of nSnBnC super-
lattice in (a) paraelectric and (b) ferroelectric regime.

FIG. 4 (color online). Model interface dipole densities.
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