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The electronic properties of a particular class of domain walls in gapped graphene are investigated. We
show that they can support midgap states which are localized in the vicinity of the domain wall and
propagate along its length. With a finite density of domain walls, these states can alter the electronic
properties of gapped graphene significantly. If the midgap band is partially filled, the domain wall can
behave like a one-dimensional metal embedded in a semiconductor and could potentially be used as a
single-channel quantum wire.
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Graphene is a one-atom thick layer of carbon atoms with
a hexagonal lattice structure and where electrons within
�1 eV of the Fermi energy obey a Dirac equation and have
a linear dispersion relation ! � vFj ~kj with Fermi velocity
vF � c=300 [1,2]. It has been studied as an analog of
relativistic field theory [2] where relativistic quantum me-
chanics and field theory phenomena special to 2� 1 space-
time dimensions [3,4] could be realized in nature. It was
identified and studied in the laboratory in 2004 [5], and it
turns out to have high conductivity and carrier mobility and
other interesting properties which make it a promising
material for applications in electronic devices [6–8].

An important current problem is to modify graphene so
that it has a gap in its energy spectrum [9]. The idea is that,
with a small gap so that electrons obey a Dirac equation
with mass, it would retain the good features of graphene
and could also be used as a semiconductor in applications
where a gap is essential, for example, a field effect tran-
sistor. Breaking the symmetry which interchanges the two
triangular sublattices of the hexagonal graphene lattice will
gap the spectrum [2]. This could be accomplished, for
example, by giving electrons residing on A sites a different
energy from those onB sites by introducing a staggered on-
site energy [2]. It can also arise from deformations of
bonds on the graphene lattice [10] analogous to those
known from the study of carbon nanotubes [11]. A third
possibility is to use multilayer graphene where the layers
can be stacked so that their interaction breaks the sublattice
symmetry. In all cases, to retain the features of the Dirac
equation, the gap should be much less than the nearest
neighbor hopping amplitude t� 2:7 eV.

The diatomic material boron-nitride (BN) has the same
lattice structure and valence electrons as graphene and a
staggered on-site energy by virtue of having different
atoms on the two sublattices. Monolayers have been
made in the laboratory [12]. However, the gap is too large
�4:5 eV for Dirac electrons. An approach currently being
pursued is to attach a graphene monolayer to a BN sub-
strate. The resulting gap in graphene is estimated to be
�53 meV [13], which is in the interesting range. Another

approach is the epitaxial growth of graphene on a silicon-
carbide substrate where a larger magnitude gap �2:6 eV
has been observed [14].

In this Letter, we shall consider linelike domain-wall
defects in the mass pattern in graphene which is gapped by
a sublattice symmetry breaking staggered on-site energy.
We find that these defects can have interesting electronic
properties. The domain walls are shown in Figs. 1(b) and
1(c) where the zigzag and armchair walls form boundaries
between regions where the staggered on-site energy is
shifted between the two sublattices. Such domain walls
could be realized naturally in BN and would be inherited
by graphene on a BN substrate, for example. We show that
they can give rise to a band of midgap states. These states
are localized in the vicinity of the wall and propagate along
its length. If the midgap band is partially filled, the domain
wall can behave like a one-dimensional metal embedded in
a semiconductor and could potentially be used as a single-
channel quantum wire. One might imagine that, once
techniques for deposition of graphene monolayers on sub-
strates are better developed, the conditions for the exis-
tence of these domain-wall wires could be created and
manipulated to the point where they could be used to print
electric circuits on graphene sheets.

Midgap states already play an important role in gra-
phene. It was pointed out long ago [2] that an index
theorem governs the degeneracy of the E � 0 Landau level
in graphene in a magnetic field, and this level is half filled
in the neutral material. This observation has spectacular
experimental confirmation in the half-odd-integer anoma-
lous quantum Hall effect [6,15,16]. In addition, theoretical
studies of pointlike vortex defects in a mass condensate due
to a Kekule distortion of graphene find midgap electron
states which can give the vortices fractional charge [10,17–
20], thus giving a two-dimensional realization of a phe-
nomenon previously known to occur in one-dimensional
linearly conjugated polymers such as polyacetylene [21–
23]. Similar states bound to vortices in a proximity-
induced superconducting condensate in graphene could
lead to anyonic statistics with potential applications to
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quantum computing [24]. An essential common feature of
these examples is the existence of ‘‘zero-mode’’ midgap
states in the spectrum of the Dirac Hamiltonian, which
arises from the interaction with fields that have a nontrivial
topology. In the case of the vortex, this topology is due to
the vorticity. Let us consider a simple example to show that
a related phenomenon takes place for a domain wall.
Consider the 4� 4-matrix graphene Dirac Hamiltonian
with the addition of a mass term (which might arise from
a staggered on-site energy):

 H� @vF

mvF
@

i ddx�
d
dy 0 0

i ddx�
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0 0
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2
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The two diagonal blocks correspond to the two graphene
valleys, which transform into each other under parity and
time reversal. A domain wall is described by replacing the
massm in Eq. (1) by a functionm�x�which depends on one
of the coordinates, x, with a soliton profile:

 lim
x!�1

m�x� � �m< 0; lim
x!1

m�x� � m> 0: (2)

The energy spectrum then has the same gapped conduction
and valence band branches as would occur if m�x� in
Eq. (1) were a constant with the asymptotic value of the

mass m: E � �vF
�����������������������
~k2
�m2v2

F

q
. These describe electrons

in the bulk semiconductor away from the wall. As well,
there is a gapless midgap branch whose wave functions
have support near the wall. Explicitly, the (unnormalized)
wave functions and eigenvalues are
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Note that this solution exists and is continuum normal-
izable for whatever the profile of the position-dependent
mass term—it needs only to have the asymptotic behavior
of a topological soliton as in Eq. (2) [25]. In particular, it
should be applicable to a one lattice spacing thick domain
wall such as those drawn in Figs. 1(b) and 1(c).

What we have found are two bands of midgap states
corresponding to one left- and one right-moving one-
dimensional massless fermion (for each spin degree of
freedom) traveling along the length of the domain wall.
An effective Lagrangian describing them would be

 L � i
X
s

	 yLs�@t � vF@x� Ls �  
y
Rs�@t � vF@x� Rs
; (5)

where s labels the two spin states. Effects of impurities and
local interactions can be important in one dimension and
should be taken into account. Four-fermion operators are
perturbatively marginal, and adding those which do not
implement umklapp processes yields the Tomonaga-
Luttinger model which is a solvable conformal field theory
with well-known properties.

To understand the structure of the bands in more detail,
we must take a closer look at the tight-binding lattice
model of gapped graphene. We shall find features that
are not reflected in the continuum analysis, which is only
valid in a small region near E � 0. The Hamiltonian is

 H�
X
A;i

tbyA� ~siaA�
X
B;i

tayB�~sibB�
X
A

�ayAaA�
X
B

�byBbB;

(6)

where ayA, aA, byB, bB are the quantum amplitudes for an
electron to occupy sites labeled A and B on the sublattices
A and B, respectively. The lattice and sublattices are de-
picted in Fig. 1(a). The first terms in Eq. (6) describe
electron tunneling between nearest neighbor sites. The
terms proportional to � are on-site energies. They break

BA
(a)

(b)

(c)

FIG. 1. (a) A hexagonal graphene lattice with triangular sub-
lattices A (black dots) and B (white dots) connected by vectors
~s1 � �0;�1�a, ~s2 � �

���
3
p
=2; 1=2�a, ~s3 � ��

���
3
p
=2; 1=2�a with

lattice constant a � 1:23 �A. (b) A zigzag domain wall. (c) An
armchair domain wall. In (b) and (c), the on-site energies are��
on black dots and �� on white dots; the sublattices which have
higher or lower on-site energies are interchanged at a domain
wall, creating a line of mismatched neighbors, denoted by a
dashed line.
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the sublattice symmetry and generate a gap. The
Schrödinger equation is

 �E���aA� t
X
i

bA�~si ; �E���bB� t
X
i

aB�~si : (7)

To study the zigzag domain wall in Fig. 1(b), we solve
Eq. (7) with � replaced by � sign�Ay� and � sign�By�. The
spectrum has branches corresponding to electrons propa-
gating in the bulk of the gapped graphene away from the
wall:

 E��

��������������������������������������������������������������������������������������������������
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2
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2
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s
:

(8)

Here �kx; ky� are wave vectors. This bulk spectrum has a
gap 2� and is symmetric about E � 0. Then, there are two
branches with wave functions which fall off exponentially
with transverse distance jAyj, jByj from the wall and are
oscillating functions of the longitudinal Ax, Bx coordinates
with wave vector kx:
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The band in Eq. (9) is located inside (and reaches slightly
below) the negative energy bulk states Eq. (8). The other

branch Eq. (10) covers the interval 	t�
�������������������
�2 � 4t2

p
; t��
.

If t > �, this band crosses zero energy (E � 0) at two
values of kx, and thus agrees with the continuum analysis
which is valid only when �
 t and which predicts the
existence of two zero energy modes—one for each cross-
ing. The spectrum and density of states for � � 0:5t are
depicted in Fig. 2. Note that, unlike the spectrum of bulk
graphene Eq. (8), the zigzag domain-wall spectrum is not
symmetric about E � 0. This is evident from its structure
displayed in Fig. 1(b), where the mismatched sites along

the wall are entirely black dots with on-site energy ��.
The zigzag domain wall violates the symmetry which
reflects the sign of the energy. There is an antiwall where
the mismatched bonds are entirely white dots—with en-
ergy ��. Its domain-wall spectrum would have opposite
sign to Eqs. (9) and (10).

We can get an intuitive understanding of the spectrum in
Eqs. (9) and (10) in the limit where � is large. Initially,
neglecting t, there are two energy levels, � for an electron
sitting on a white dot and �� for an electron sitting on a
black dot in Fig. 1(b). Then, if we turn on small t, the
largest effect is for the black dots on each side of the
domain wall which have a nearest neighbor at the same
zeroth order energy, ��. Turning on the hopping would
split the degeneracy of these sites to ��� t and ��� t.
Note that this does not happen for sites in the bulk away
from the domain wall, since they are not degenerate with
their neighbors—corrections to their spectrum would be at
the next higher order in t. The energies��� t and���
t are identical to the Taylor expansions of Eqs. (9) and (10),
respectively, to first order in t. The next order in the
hopping amplitude, second order perturbation theory,
would take into account hopping to an adjacent site with
energy �� and back, and would be of order t2=�, also
what one would expect from expanding Eqs. (9) and (10) as
well as (8) to second order in t. The order t2=� contribu-
tions are momentum dependent and the energy levels
become bands. Then t is made larger than �; they spread
out into the bands depicted in Fig. 2.

In the neutral ground state, the half of the electron states
with lowest energy will be filled. For the zigzag wall there
is a profound difference between two cases—when the
midgap band Eq. (10) overlaps the negative energy bulk
band (�=t < 3=2) and when it does not (�=t > 3=2).
When it does not, the neutral ground state has the negative
energy bulk states Eq. (8) and the lower domain-wall band
Eq. (9) completely filled. There is a gap (which could be
small) between the top of the filled lower bulk band and the
empty upper domain-wall band Eq. (10). When they do
overlap [as depicted in Fig. 2(a)], some of the upper
domain-wall band Eq. (10) will fill before all of the nega-
tive energy bulk states are filled—the domain wall will
borrow some electrons from the bulk. It will then have a
finite charge density and a partially filled upper band which
will behave like a one-dimensional metal, even in neutral
graphene.

The armchair domain wall is depicted in Fig. 1(c). It is
oriented along the y axis. It has the same gapped bulk
branches Eq. (8) as the zigzag wall. We look for wave
functions which decay exponentially in distance jAxj, jBxj
from the wall. They are superpositions of two plane waves
propagating along the wall with wave vectors ky and ky �
2�=3. (This corresponds to mixing of the graphene val-
leys.) The spectrum has four bands depicted in Fig. 2(b). It

is E��
��������������������������������������������
t2sin2 3a

2 ky��
2K�ky�

q
, where K�1� e�

��
3
p
ak�1�x ��

�1� e�
��
3
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FIG. 2 (color online). Density of states (D.O.S. in arbitrary
units, blue or dark gray) versus energy E (in units of t) for (a) a
zigzag domain wall and (b) an armchair wall when � � 0:5t.
Also shown is the D.O.S. for bulk bands (red or light gray).

PRL 101, 087204 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
22 AUGUST 2008

087204-3



must be determined by solving two equations: K � 1 �
t2

�2 �cosh
��
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p
a

2 k�1�x � cosh
��
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p
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2 k�2�x �2 and cosh
��
3
p
a

2 k�2�x �

cosh
��
3
p
a

2 k�1�x � cos3a
2 ky, jkyj �

�
3a . We can find explicit so-

lutions in the large and small �=t limits. When �=t is
large, the spectrum is concentrated at four values:

 �� t: E �
�
���� t� � � ��
���� t� � � ��:

(11)

Two of these are inside the bulk spectrum and two are in
the gap. They agree with what we would expect when � is
large, where there are two energy levels, �� and ��,
corresponding to electrons sitting on the black or white
dots, respectively, in Fig. 1(c). Then, the leading effect of
turning on a small t is that the pairs of adjacent degenerate
states that exist at the location of the domain wall are split
by tunneling. Now, unlike for the zigzag, there are degen-
erate pairs with both zeroth order energies �� and ��.
The splitting produces four domain-wall energies in
Eq. (11). Further corrections are of order t2=�, which,
when taken into account, spread the four levels into four
bands that then get wider as t gets larger.

In the limit �
 t, we also find four bands:

 �
 t: E �

8><
>:
�

�����������������������������������������������
�2 � 4t2�1� cos3a

2 ky�
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�������������������������������������������������������
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2 ky �
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�4�cos23a
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2
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(12)

As depicted in Fig. 2, the upper and lower band are entirely
within the upper and lower bulk bands. The middle two
overlap the bulk energy gap and themselves have a gap
which is much smaller than the bulk gap, �E � 4�2=3t

2�. For a typical small �� 25 meV and t� 2:7 eV, the
gap in the midband states is tiny, less than 1 meV. This
existence of a gap in the spectrum of states bound to the
domain wall is compatible with the continuum analysis
since the gap is vanishingly small in the continuum limit,
scaling to zero with the lattice spacing a, so it is not visible
to the continuum Dirac Hamiltonian. Intuition for the gap
in the armchair spectrum can also be gained by studying
Fig. 1(c). Because of the alternating pattern of pairs of
black and pairs of white dots as one follows the domain
wall, the translation symmetry along the domain wall is by
two lattice spacings, rather than one. This reduced trans-
lation symmetry will gap the domain-wall spectrum, analo-
gous to gapping created by a Peierls instability. What is
surprising here is that the gap is so small.

In summary, we have shown that the simplest domain
walls in gapped graphene can have interesting electronic
properties. A partially filled domain-wall band will behave
like a one-dimensional metal. The continuum analysis
suggests that similar behavior can be expected for other
types of domain walls, such as those arising from reversing
the pattern of a lattice distortion. Analysis of the details of
the spectrum in those cases is left to future work. They

could also occur in other materials which have a Dirac
spectrum, such as the hypothetical flux phases of a square
lattice where vortices have recently been discussed [26]
and where domain walls, some of which would support
zero modes, should exist.

G. W. S. thanks Peter Orland for discussions and the
Institute Galileo Galilei where part of the work was
done; we also thank Jun Liang Song for help with Fig. 2.
This work was supported in part by NSERC (Canada), the
Canadian Institute for Advanced research, and the A. P.
Sloan Foundation.

[1] P. R. Wallace, Phys. Rev. 71, 622 (1947).
[2] G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).
[3] A. J. Niemi and G. W. Semenoff, Phys. Rev. Lett. 51, 2077

(1983).
[4] R. Jackiw, Phys. Rev. D 29, 2375 (1984).
[5] K. S. Novoselov et al., Science 306, 666 (2004).
[6] K. S. Novoselov et al., Nature (London) 438, 197 (2005).
[7] A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183

(2007).
[8] M. I. Katsnelson, Mater. Today 10, 20 (2007).
[9] K. Novoselov, Nature Mater. 6, 720 (2007).

[10] C.-Y. Hou, C. Chamon, and C. Mudry, Phys. Rev. Lett. 98,
186809 (2007).

[11] C. Chamon, Phys. Rev. B 62, 2806 (2000).
[12] K. S. Novoselov et al., Proc. Natl. Acad. Sci. U.S.A. 102,

10451 (2005).
[13] G. Giovannetti, P. A. Khomyakov, G. Brocks, P. J. Kelly,

and J. van den Brink, Phys. Rev. B 76, 073103 (2007).
[14] S. Y. Zhou et al., Nature Mater. 6, 770 (2007).
[15] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature

(London) 438, 201 (2005).
[16] V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett. 95,

146801 (2005); N. M. R. Peres, F. Guinea, and A. H.
Castro Neto, Phys. Rev. B 73, 125411 (2006).

[17] R. Jackiw and S.-Y. Pi, Phys. Rev. Lett. 98, 266402 (2007).
[18] C. Chamon, C. Y. Hou, R. Jackiw, C. Mudry, S. Y. Pi, and

A. P. Schnyder, Phys. Rev. Lett. 100, 110405 (2008).
[19] C. Chamon, C. Y. Hou, R. Jackiw, C. Mudry, S. Y. Pi, and

G. Semenoff, Phys. Rev. B 77, 235431 (2008).
[20] J. Pachos, M. Stone, and K. Temme, Phys. Rev. Lett. 100,

156806 (2008).
[21] W. P. Su, J. R. Schrieffer, and A. Heeger, Phys. Rev. Lett.

42, 1698 (1979).
[22] R. Jackiw and J. R. Schrieffer, Nucl. Phys. B190, 253

(1981).
[23] A. Niemi and G. Semenoff, Phys. Rep. 135, 99 (1986).
[24] P. Ghaemi and F. Wilczek, arXiv:0709.2626.
[25] To formulate a general criterion for the existence of

the midgap band, assume that the Dirac operator has the
form � � � � i�x @

@x�M�x�, whereM is a mass matrix. Zero
modes will exist when the two matrices i�xM�1� and
i�xM��1� have simultaneous eigenvalues whose real
parts are positive and negative, respectively. Then, if s is
the eigenspinor, exp	�i

R
x
0 dx

0�xM�x0�
s is a normalizable
wave function.

[26] B. Seradjeh and M. Franz, arXiv:0709.4258.

PRL 101, 087204 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
22 AUGUST 2008

087204-4


