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For a newly discovered iron-based high Tc superconductor LaFeAsO1�xFx, we have constructed a

minimal model, where inclusion of all five Fe d bands is found to be necessary. The random-phase

approximation is applied to the model to investigate the origin of superconductivity. We conclude that the

multiple spin-fluctuation modes arising from the nesting across the disconnected Fermi surfaces realize an

extended s-wave pairing, while d-wave pairing can also be another candidate.
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Understanding the mechanism of unconventional super-
conductivity (SC) has been one of the most challenging
problems in condensed-matter physics. There is a renewed
fascination with a recent discovery of SC in an iron-based
superconductor LaFeAsO1�xFx [1], which is likely to pro-
vide a fresh avenue for such a challenge. LaFeAsO belongs
to the family of quaternary oxypnictides LnMPnO (Ln ¼
La, Pr; M ¼ Mn, Fe, Co, and Ni; Pn ¼ P, As), which was
originally fabricated by Zimmer et al. and Quebe et al.
[2,3] For this family of compounds, Kamihara et al. first
reported that LaFePO exhibits SC with Tc ’ 3 K, which
was raised to Tc ’ 7 K by F doping [4]. SC has also been
found in nickel-based compounds with the same structure
[5]. Very recently, Kamihara et al. have come up with the
discovery of SC in LaFeAsO1�xFx, where the F doping
with x ’ 0:11 leads to a remarkable Tc � 26 K.

The high value of Tc itself, confirmed also by Chen et al.
[6], suggests the possibility of unconventional SC, but
direct evidences is accumulating: A specific-heat measure-
ment in magnetic fields shows that the coefficient � dis-

plays
ffiffiffiffiffi
H

p
behavior [7]. A point-contact conductance

measurement exhibits spectra with a distinct zero-bias
peak [8], suggestive of the presence of sign change in the
gap function [9–12]. The starting material, LaFeAsO, is a
bad metal with some anomaly in the resistivity around
100 K [1]. As the system becomes metallic upon F doping,
the uniform susceptibility exhibits Curie-Weiss behavior.
Anomalies in the normal-state transport properties have
also been reported for doped systems [13].

Theoretically, a first-principles band structure has been
obtained for LaFePO [14], and more recently for LaFeAsO
and related materials [15–18]. These band structures are
metallic with five pieces (sheets) of the Fermi surface in
the undoped system, which contradicts the experiment for
undoped LaFeAsO [1]. However, a dynamical mean-field
study shows that the electron correlation enhances the

crystal field splitting, which leads to band-semiconducting
behavior in accord with the experiment [16]. Local spin-
density calculations for LaFeAsO show that the system is
around the border between magnetic and nonmagnetic
states, with a tendency toward ferromagnetism and anti-
ferromagnetism [15,17]. It is also pointed out that the
electron-phonon coupling is too weak to account for Tc ¼
26 K [7,18].
Given this background, the purpose of the present Letter

is to first construct a microscopic electronic model for
LaFeAsO1�xFx, which then serves as the basis for identi-
fying the possible mechanisms for why this material favors
high-Tc. The minimal model has turned out to contain all
five Fe d orbitals, to which we have applied the random-
phase approximation (RPA) to solve the Eliashberg equa-
tion. We shall conclude that a peculiar Fermi surface
consisting of multiple pockets and ensuing multiple spin-
fluctuation modes realize an unconventional s-wave pair-
ing, while d-wave pairing can also be another candidate.
LaFeAsO has a tetragonal layered structure, in which Fe

atoms are arrayed on a square lattice. Because of the
tetrahedral coordination of As, there are two Fe atoms
per unit cell. Each Fe layer is then sandwiched between
LaO layers. The experimentally determined lattice con-

stants are a ¼ 4:03552 �A and c ¼ 8:7393 �A, with two
internal coordinates zLa ¼ 0:1415 and zAs ¼ 0:6512. We
have obtained the band structure [Fig. 1(a), inset] with the
Quantum-ESPRESSO package [19], and then construct the
maximally localized Wannier functions [20]. These maxi-
mally localized Wannier functions, centered at the two Fe
sites in the unit cell, have five orbital symmetries (orbital
1 : d3Z2�R2 , 2 : dXZ, 3 : dYZ, 4 : dX2�Y2 , 5 : dXY , where X,
Y, Z refer to those for the original unit cell). We can note
that the two Wannier orbitals in each unit cell are equiva-
lent in that each Fe atom has the same local arrangement of
other atoms. We can thus take a unit cell that contains only
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one orbital per symmetry by unfolding the Brillouin zone
(BZ) [21], and we end up with an effective five-band model
on a square lattice, where x and y axes are rotated by 45�
from X-Y [Fig. 1(b), inset], to which we refer for all the
wave vectors hereafter. The in-plain hopping integrals
tð�x;�y;�z ¼ 0;�; �Þ are displayed in Table I, where
½�x;�y� is the hopping vector, and �, � label the five
Wannier orbitals. The on-site energies for the five orbitals
are ð"1; "2; "3; "4; "5Þ ¼ ð10:75; 10:96; 10:96; 11:12;
10:62Þ eV. With these effective hoppings and on-site en-
ergies, the in-plane tight-binding Hamiltonian is given in
the form

H0¼
X
ij

X
��

X
�

½tðxi�xj;yi�yj;�;�Þcyi��cj��

þ tðxj�xi;yj�yi;�;�Þcyj��ci���þ
X
i��

"�ni��; (1)

where cyi�� creates an electron with spin � on the �th

orbital at site i, and ni�� ¼ cyi��ci��. We define the band

filling n as the number of electrons per number of sites
(e.g., n ¼ 10 for full filling). The doping level x in
LaFeAsO1�xFx is related to the band filling as n ¼ 6þ x.

In the obtained band structure in Fig. 1(a), we notice that
the five bands are heavily entangled, reflecting strong
hybridization (see Table I) of the five 3d orbitals, which
is physically due to the tetrahedral coordination of As
atoms around Fe. Hence we conclude that the minimal
electronic model requires all five bands. In Fig. 1(b), the
Fermi surface for n ¼ 6:1 (corresponding to x ¼ 0:1) ob-
tained by ignoring the interlayer hoppings is shown in the
2D unfolded BZ. The Fermi surface consists of four pieces
(pockets in two dimensions): two concentric hole pockets
(denoted as �1, �2) centered around ðkx; kyÞ ¼ ð0; 0Þ, two
electron pockets around ð�; 0Þ (�1) or ð0; �Þ (�2), respec-
tively. �i (�i) corresponds to the Fermi surface around the
�Z (MA) line (in the original BZ) in the first-principles
band calculation [14,16,17].
Having constructed the model, we now move on to the

RPA calculation. We again adopt the 2D model in which
the interlayer hoppings are neglected [22]. For the many-
body part of the Hamiltonian, we consider the standard
interaction terms that comprise the intraorbital Coulomb
U, the interorbital Coulomb U0, the Hund coupling J, and
the pair-hopping J0. All calculations are done in the orbital
representation. Details of the multiorbital RPA calculation
can be found in, e.g., Refs. [23,24]. The modification of the
band structure due to the self-energy correction is not taken
into account, on which we comment later. In the present
case, the Green function is a 5� 5 matrix, while the spin
and the orbital susceptibilities become 25� 25 matrices.
The Green function and the effective pairing interactions,
obtained from the susceptibilities, are plugged into the
linearized Eliashberg equation, and the gap function in a
5� 5matrix form along with the eigenvalue � is obtained.
Tc corresponds to the temperature where � reaches unity.
32� 32 k-point meshes and 1024 Matsubara frequencies
are taken. We find that the spin fluctuations dominate over
orbital fluctuations as far as U >U0, so we focus on the
spin susceptibility. We denote the largest eigenvalue of the
spin susceptibility matrix for i!n ¼ 0 as 	sðkÞ. The gap
function matrix at the lowest Matsubara frequency is trans-
formed into the band representation by a unitary trans-
formation, and its diagonal element for band i is denoted
as 
iðkÞ.
Let us first look at the result for 	s for U ¼ 1:2, U0 ¼

0:9, J ¼ J0 ¼ 0:15, and T ¼ 0:02 (all in units of eV) in
Fig. 2(a). The spin susceptibility has peaks around
ðkx; kyÞ ¼ ð�; 0Þ; ð0; �Þ and also a ridgelike structure

from ð�;�=2Þ to ð�=2; �Þ. This in fact reflects the Fermi
surface in Fig. 1(b), where we have two kinds of nesting
vector: �ð�; 0Þ; ð0; �Þ across � and �, and
�ð�;�=2Þ; ð�=2; �Þ across �1 and �2. Good nesting en-
hances tendency towards magnetism. In the RPA (where
the self-energy correction in the Green function is ne-
glected), we have to take U as small as 1.2 eV to ensure
magnetic ordering does not take place in the temperature
range considered.
For SC, we show in Figs. 2(c) and 2(d) the gap function

for bands 3 and 4 (as counted from below), together with
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FIG. 1 (color online). (a) The band structure of the five-band
model in the unfolded BZ, where the interlayer hoppings are
included. To compare with the ten-band model (thick red lines in
the inset; the symbols are the present local-density approxima-
tion results), note the original (dashed lines) and the unfolded
(solid lines) BZ shown in (b). (b) Fermi surface for n ¼ 6:1 (with
the interlayer hoppings ignored), with the arrows indicating the
nesting vectors. Inset depicts the original (dashed lines) and
reduced (solid lines) unit cell in real space.
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the Fermi surface of each band. At this temperature (T ¼
0:02), the eigenvalue of the Eliashberg equation is � ¼
0:96 [25]. The gap is basically an s wave, but changes sign
between the Fermi surface of band 3 ð�2Þ (and also band 2;
�1 not shown) and those of band 4 ð�1; �2Þ, namely, across
the nesting vector �ð�; 0Þ; ð0; �Þ (M point in the original
BZ) at which the spin fluctuations develop. Such a sign
change of the gap between inner hole and outer electron
Fermi pockets is analogous to those in models studied by
Bulut et al. [26], and also by two of the present authors
[27,28]. It is also reminiscent of the unconventional s-wave
pairing mechanism for NaxCoO2 � yH2O [29] proposed by
four of the present authors [30]. After completion of the
present study, we have come to notice that a recent study by
Mazin et al. also concludes an s-wave pairing in which the
gap changes sign between � and � Fermi surfaces [31], as
schematically shown in the upper panel of Fig. 2(b). For
the present set of parameter values, in addition to this sign
change, we find that the nodes of the gap intersect the �
Fermi surface. This is because the spin fluctuations due to
the �1-�2 nesting favor a sign change in the gap between
�1 and �2 Fermi surfaces. In fact, we have found that this
nodal line moves out of the � Fermi surface for the
parameter values for which the spin fluctuations due to
the �1-�2 nesting become less effective, e.g., for U ¼ U0.
In that case, the gap becomes closer to the upper panel of
Fig. 2(b) [32].

We have so far focused on the diagonal elements of the
gap matrix in the band representation, but to be more
precise, we have to consider the off-diagonal (interband)
elements in order to make an accurate comparison with the
experiments. The off-diagonal elements in the present case
turn out to be not negligibly small due to the heavy

entanglement of the bands. One way to look at this effect

is to calculate the quantity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
̂
̂yÞ44

q
, where 
̂ is the gap

matrix and 44 denotes the diagonal element of band 4. As
shown in Fig. 2(e), we find that this quantity is finite over
the entire BZ, but a remnant of the nodal lines of the
diagonal element still appears as a valley that intersects
the � Fermi surface. In this sense, we can say that the
magnitude of the gap varies along the � Fermi surface
(becomes large at points far from the BZ edge) if the spin
fluctuations arising from �-� and �1-�2 interactions have
competing strength. The degree of the variation of the gap
in the actual materials may be determined experimentally
from the density of states, e.g., tunneling spectroscopy, or
directly by angle resolved photoemission studies.
In the above, we mainly considered the possibility of

unconventional s-wave pairing. On the other hand, if the �
Fermi surfaces are absent (or less effective), the simplest
form of the gap would be the dx2�y2-wave pairing (dXY in

the original BZ), where the gap changes sign between �1

and�2 Fermi surfaces as shown in the lower panel of Fig. 2
(b). To check this, we have performed an RPA calculation
on (i) the present model with n ¼ 6:3 and (ii) a model
where we artificially shift the crystal field splitting to let
the � Fermi surfaces disappear for n ¼ 6:1. In both cases,
we indeed obtain the dx2�y2 wave. Since the band structure

generally changes from the local-density approximation
result due to correlation effects [16] or a band filling differ-
ent from the formally expected value, we leave, at the
present stage, this d-wave state as another candidate for
the pairing symmetry in this material.
Many other interesting problems remain for future stud-

ies. Spin fluctuations and SC should be studied by taking

TABLE I. Hopping integrals tð�x;�y;�; �Þ in units of 0.1 eV. ½�x;�y� denotes the in-plain hopping vector, and ð�; �Þ the orbitals.
�y, I, and �d correspond to tð�x;��y;�; �Þ, tð��x;��y;�; �Þ, and tð�y;�x;�; �Þ, respectively, where ‘‘�’’and ‘‘�ð�0; �0Þ’’ in
the ð�; �Þ row mean that the corresponding hopping is equal to �tð�x;�y;�; �Þ and �tð�x;�y;�0; �0Þ, respectively. This table,
combined with the relation tð�x;�y;�; �Þ ¼ tð��x;��y;�;�Þ, gives all the in-plain hoppings � 0:01 eV up to fifth neighbors.

[∆x,∆y]

[µ,v]
½1; 0� ½1; 1� ½2; 0� ½2; 1� ½2; 2� �y I �d

ð1; 1Þ �0:7 �0:4 0.2 �0:1 þ þ þ
ð1; 2Þ �0:8 �ð1; 3Þ � �
ð1; 3Þ 0.8 �1:5 �0:3 �ð1; 2Þ � þ
ð1; 4Þ 1.7 �0:1 � þ þ
ð1; 5Þ �3:0 �0:2 þ þ �
ð2; 2Þ �2:1 1.5 þð3; 3Þ þ þ
ð2; 3Þ 1.3 0.2 �0:2 þ þ �
ð2; 4Þ 1.7 0.2 þð3; 4Þ � �
ð2; 5Þ �2:5 1.4 �ð3; 5Þ � þ
ð3; 3Þ �2:1 3.3 �0:3 0.7 þð2; 2Þ þ þ
ð3; 4Þ 1.7 0.2 0.2 þð2; 4Þ � þ
ð3; 5Þ 2.5 0.3 �ð2; 5Þ � �
ð4; 4Þ 1.6 1.2 �0:3 �0:3 �0:3 þ þ þ
ð4; 5Þ �0:1 � þ �
ð5; 5Þ 3.1 �0:7 �0:2 þ þ þ
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into account the self-energy correction, for which a fluc-
tuation exchange [33] study is underway [34]. It is also
intriguing to investigate whether the present unconven-
tional gap can quantitatively account for the specific-heat
[7] and point-contact conductance [8] results. Also, further
insight into the origin of the high Tc SC in LaFeAsO1�xFx
may be obtained by performing similar microscopic stud-
ies on LaFePO1�xFx [4] or LaNiPO [5].
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FIG. 2 (color online). RPA result for the spin susceptibility

	s (a), the gap functions 
3 (c) and 
4 (d),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
̂
̂yÞ44

q
(e) for

U ¼ 1:2, U0 ¼ 0:9, J ¼ J0 ¼ 0:15, n ¼ 6:1, and T ¼ 0:02 (in
eV). In (c) and (d), the black (green or light gray) solid lines
represent the Fermi surfaces (gap nodes). In (b), the fully gapped
extended s-wave (upper panel) and dx2�y2 -wave gaps are sche-

matically shown.
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