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Nondissipative Josephson current through nanoscale superconducting constrictions is carried by spec-

troscopically sharp energy states, the so-called Andreev states. Although theoretically predicted almost

40 years ago, no direct spectroscopic evidence of these Andreev bound states exists to date. We propose a

novel type of spectroscopy based on embedding a superconducting constriction, formed by a single-level

molecule junction, in a microwave QED cavity environment. In the electron-dressed cavity spectrum we

find a polariton excitation at twice the Andreev bound state energy, and a superconducting-phase-

dependent ac Stark shift of the cavity frequency. Dispersive measurement of this frequency shift can

be used for Andreev bound state spectroscopy.
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Supercurrents through mesoscopic or nanosized
Josephson junctions are mainly carried by spectroscopi-
cally sharp subgap bound states, so-called Andreev bound
states (ABS) [1], as predicted theoretically in Refs. [2,3].
When the weak link is a quantum dot with a single or a few
discrete levels, supercurrents are also predicted to flow
mainly through ABS [4]. ABS come in pairs, one state
above and one below the Fermi level. The two ABS of the
pair have opposite dispersion with the superconducting
phase difference over the junction and carry supercurrent
in opposite directions across the junction. These two states
form a well-defined two-level system that has been sug-
gested as a qubit [5,6]. Before such a qubit can be realized,
experimental detection and characterization of this engi-
neered two-level system should be carried out. To our best
knowledge, however, no one has to date reported experi-
ments with direct spectroscopic proof for the existence of
Josephson current carrying ABS [7].

A single-wall carbon nanotube (SWCNT) embedded
between two superconducting metal leads can support a
supercurrent [8–13]. The electronic energy levels of the
SWCNT, formed through size quantization, can be tuned in
and out of resonance with the lead Fermi levels by gating
the SWCNT. Such superconducting SWCNT transistors
[11] can further be switched from a Coulomb blockade
regime to a Kondo regime to a weakly interacting Fabry-
Perot regime by changing a back gate voltage [12]. The
potential for applications of such SWCNT quantum-level
junctions was demonstrated through the fabrication and
detailed functional control of a nano-SQUID, involving
two gated SWCNT junctions with controlled on-off states
as well as controlled 0-� SQUID states [13]. Similar
control has been demonstrated using semiconducting
nanowire junctions [14–16].

We propose a method for direct ABS spectroscopy,
based on dispersive measurement of a polaritonic state
formed by the ABS strongly coupled to a QED cavity
mode. Consider two superconducting leads connected by

a molecule with one resonant level, as shown in Fig. 1. This
setup can be realized in the SWCNT transistor by tuning
the voltage of the gate electrode [11–13]. The supercon-
ducting proximity effect leads to a split of the resonant
level into a pair of ABS, where the ABS level splitting can
be controlled by tuning the superconducting phase differ-
ence in a SQUID setup. When the gate electrode is coupled
to an LC oscillator, induced quantum fluctuations of the
gate potential lead to dressed Andreev bound states. By
tuning the ABS into resonance with the cavity, and mea-
suring the shift of the cavity base frequency, the ABS
energy can be observed. The complete ABS energy dis-
persion with respect to the superconducting phase can be
extracted by using a cavity with a variable base frequency

FIG. 1 (color online). Superconducting density of states for
’ ¼ 0:6� resolved into right, Nþð"Þ, and left, N�ð"Þ, current-
carrying branches. The lightly shaded background is the density
of states of the resonant level when the contacts are in the normal
state. The electron-oscillator coupling leads to dressed Andreev
bound states with sidebands separated in energy by the oscillator
frequency !0. The inset shows a sketch of the considered
system.
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[17–21]. The suggested dispersive method does not involve
real interlevel transitions and could be simpler to realize
than methods based on microwave absorption [22].
Another advantage of the suggested spectroscopy is that
it makes it possible to directly access and characterize
individual ABS without measuring dc contact current-
voltage characteristics [23]. A similar dispersive measure-
ment method has earlier been applied to detect quantum
states of superconducting charge qubits [24].

The Hamiltonian for the coupled electron-oscillator sys-
tem depicted in the inset of Fig. 1 is

Ĥ ¼ ĤL þ ĤR þ Ĥlevel þ ĤT þ Ĥosc þ Ĥlevel-osc (1)

and will be quantified in terms of creation operators for the
three excitations of the system: reservoir electrons, ĉyk�;�
(reservoir � ¼ L; R, momentum k, and spin �); dot elec-

trons, d̂y�; and the oscillator mode b̂y. The two supercon-
ducting reservoirs are described by a standard BCS Hamil-

tonian Ĥ�¼P
k��kĉ

y
k�;�ĉk�;�þ

P
kð��ĉ

y
k";�ĉ

y
�k#;�þH:c:Þ,

where H.c. denotes Hermitian conjugate, �k is the quasi-
particle dispersion, and �� ¼ �ðTÞei’� are the order pa-
rameters of the reservoirs that have the same temperature
dependent gap �ðTÞ, but have a tunable superconducting
phase difference ’ ¼ ’R � ’L between them. The reser-
voirs are coupled by tunneling through a single noninter-

acting molecular level described by Ĥlevel ¼
P

�"dd̂
y
�d̂�;

where the level energy "dðVgÞ is tunable by the gate

voltage. The lead-to-level tunneling is described by ĤT ¼P
k�;�ðvk�;�ĉ

y
k�;�d̂� þ H:c:Þ. We consider symmetric,

spin-independent coupling between the level and the two
leads, vk�;L ¼ vk�;R � v�k;kF , which corresponds to an

effective tunneling rate at each barrier � ¼ jvj2
2� N F, where

N F is the normal state density of states of the leads at the
Fermi level. The oscillator mode with frequency !0 is

described by the Hamiltonian Ĥosc ¼ !0b̂
yb̂. The cou-

pling of the molecular level to the oscillator is described

by a linear interaction Ĥlevel-osc ¼
P

��ðb̂þ b̂yÞd̂y�d̂�,
where � is the coupling strength. We will assume through-
out this Letter that the molecular level is aligned with the
Fermi levels of the leads, i.e., "d ¼ 0.

We solve the Hamiltonian (1) treating the tunneling to
infinite order in the hopping [25–27] and the electron-
oscillator coupling perturbatively in a self-consistent Born
approximation [28–33]. The problem reduces to consider-
ing a molecular level coupled to an oscillator. Super-
conductivity modifies the electronic state on the molecular
level by splitting it into two branches (s ¼ �1) each
described by a retarded Green function

GR
s ð"Þ ¼

��ð"Þ
zRs ð"Þ"R þ s�cosð’=2Þ ; (2)

where the energy-renormalization factor zsð"Þ is defined

by zRs ð"Þ" ¼ ~"R þ ��ð"Þ½"R � �R�sð"Þ�, with ��ð"Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�j2 � ð~"RÞ2p
=2�. The state of the oscillator is given by

the retarded Green function

DRð!Þ ¼ 2!0

ð ~!RÞ2 �!2
0 � 2!0�

Rð!Þ : (3)

The electron-oscillator coupling enters via the retarded
self-energies �R

s ð"Þ and �Rð!Þ which are determined
self-consistently by numerical iteration. �R

s ð"Þ and
�Rð!Þ are functionals of GR

s ð"Þ and DRð!Þ [and of
GK

s ð"Þ ¼ �2i ImGR
s ð"Þneð"Þ, with neð"Þ ¼ tanhð"=2TÞ

and DKð!Þ ¼ �2i ImDRð!Þnbð!Þ, with nbð!Þ ¼
cothð!=2TÞ, GA

s ¼ ðGR
s Þ�] and defined as

�R
s ð"Þ¼ i

�2

2
½DKð!Þ�GR

s ð"�!ÞþDRð!Þ�GK
s ð"�!Þ�;

(4)

�Rð!Þ ¼ �i�2
X

s¼�1

½GR�sð"Þ �GK
s ð"�!Þ

þGK�sð"Þ �GA
s ð"�!Þ�; (5)

where the convolution is defined as aðxÞ � bðx� yÞ ¼R1
�1

dx
2� aðxÞbðx� yÞ. Upon reaching self-consistency the

Josephson current is calculated as

Ið’Þ ¼ e

@
�sin

’

2

X
s¼�1

Z 1

�1
d"

2�
s Im

�
GR

s ð"Þ
��ð"Þ

�
neð"Þ: (6)

Inelastic coupling to the environment is introduced phe-
nomenologically above by ~�R ¼ �R þ i� and ~!R ¼ !R þ
i	. The parameter � � � describes a residual phase-
breaking scattering rate in the superconducting reservoirs.
In the absence of an electron-oscillator coupling it is � that
limits the lifetime of the ABS. 	 describes the finite (long)
lifetime of the mode originating from a finite (but high)
quality factor Q, such that 	 ¼ !0=Q � !0. In the
present calculations we set � ¼ 	 ¼ 10�3�.
Without coupling to the oscillator, the Josephson effect

in this system is well known [4]. The Green function
amplitudes GR

s describe two different quasiparticle
branches that form on the dot: one having an ABS below
(s ¼ þ1) and one having an ABS above (s ¼ �1) the
Fermi level; see Fig. 1. The two branches contribute to
the Josephson current (6) in opposite manner. For subgap
energies GR

s ðj"j<�Þ contributes to the current in the
positive direction for s ¼ 1 (left to right over the junction)
and vice versa for the s ¼ �1 branch. The continuum part
of GR

s ðj"j> �Þ contributes to the current in the opposite
direction compared with its corresponding subgap part.
The electron-oscillator interaction couples the two qua-

siparticle branches. This is seen explicitly in the energy-
renormalization factor zs of one branch which is modified
by the self-energy �R�s of the other branch. In Fig. 2 we
show a fully self-consistent calculation of the Andreev
spectrum as a function of superconducting phase differ-
ence. For the chosen parameters there is a resonance
between the oscillator and the ABS, i.e., 2EAð’Þ ¼ !0,
at ’ � 0:9�. Away from resonance, the ABS is shifted

EA ! �EA ¼ EA þ �2A2
E

2

�
�þ

2EA þ!0

þ ��
2EA �!0

�
(7)
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as compared with the case without coupling to the oscil-
lator, but with retained phase-dependent spectral weight
AE of the state at " ¼ �EAð’Þ. The effective electron-
oscillator coupling in the subgap region is given by the
product �AE. In Eq. (7) thermal occupation factors enter
in the combinations �� ¼ nbð!0Þ � neðEAÞ. Apart from
the shifted ABS we find satellite resonances at " ¼ s �EA �
!0 with spectral weights 1

2�
2A3

E��s=ð2sEA �!0Þ2. It is
only at resonance, 2EA ¼ !0, the satellite on either branch
with spectral weight /�� interferes with the main ABS of
the same branch index. This is seen as a precursor of an
avoided crossing in Fig. 2.

The Josephson current-phase relation is presented in
Figs. 2(b) and 2(c) for the case that the electron and os-
cillator systems are in thermal equilibrium. Because of the
different magnitudes of the thermal factors �� (�þ�2
and���0 for T&EA;!0), the current contribution of the
satellites is dominated by the satellite with weight /�þ.
This satellite reduces the Josephson current by 	�2A2

E=ð2EA þ!0Þ2, which is of the order of a few percent of the
full current for our parameter values. There is no dramatic
signature in the current-phase relation of an emerging
anticrossing at resonance because interference occurs be-
tween states carrying current in the same direction, and
moreover, these states have spectral weights shared be-
tween them drawn from the original ABS, and the popu-
lation of the states is largely phase-independent.

The Josephson current through the level modifies the
oscillator spectrum giving it a phase dependence that is
shown in Fig. 3(a) for the same parameters as for the ABS
spectrum in Fig. 2. The polarization �Rð!Þ gives the

possible collective excitations that are supported by the
electronic system. Iterating the self-consistency equations
once we get

�Rð!Þ ¼ 2�2 A2
E

ð!RÞ2 � 4E2
A

neðEAÞ (8)

for the retarded phonon self-energy. As may be expected
there is a mode with the phase dispersion !A ¼ 2EAð’Þ
originating from the transitions between the two ABS and
the subsequent emission or absorption of the energy !A. A
spectral weight 	2�2A2

E½4!2
0=ð4E2

A �!2Þ2�neðEAÞ for

this collective excitation is vanishingly small away from
resonance. Near resonance the oscillator mode and the
excitation interact strongly and an avoided crossing ap-
pears with a frequency split at 2EA ¼ !0

!0ð’Þ ¼ !0 þ �

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�

2

�
2 þ 2�2A2

EneðEAÞ
s

; (9)

where � ¼ 2EA �!0 is the detuning. The analytic esti-

mate of the split, 2�AE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2neðEAÞ

p � 0:096, for a nearly
phase-independent AE 	 0:34 when � ¼ �, is in good
agreement with the self-consistently determined split,
�0:1�, extracted from the inset in Fig. 3(a) at ’ ¼
0:9�. It is important to note that this split is significantly
larger than the intrinsic broadening of the spectral features
(		) and signals a strong-coupling regime in the sense of
cavity QED, i.e., �AE 
 	.
Away from resonance, the electron-oscillator coupling

gives a negative phase-dependent Stark shift of the oscil-
lator base frequency. We plot this shift in Figs. 3(b) and 3
(c) both as a function of electron-oscillator coupling
strength � for T ¼ 0:05� and as a function of temperature

FIG. 2 (color online). (a) The spectrum of Andreev bound
states as function of superconducting phase difference (’) for
electron-oscillator coupling � ¼ 0:1� and oscillator frequency
!0 ¼ 0:2�. The tunneling rate is � ¼ � and the temperature is
T ¼ 0:05�. The sidebands to each ABS are due to the dressing
of the ABS by the electron-oscillator coupling. The sidebands of
the ABS with branch index s ¼ �1 belong to the quasiparticle
branch with index s ¼ �1. (b) The current-phase relation for
different electron-oscillator couplings for T ¼ 0:05�. (c) The
reduction of current due to coupling to the oscillator as a
function of phase for the same temperature and electron-
oscillator couplings as in (b).

FIG. 3 (color online). (a) The spectra of the oscillator plotted
as function of superconducting phase difference with the same
parameters as in Fig. 2. A mode emerges at !Að’Þ ¼ 2EAð’Þ
and develops to a polariton when in resonance with the oscillator
(inset, 0:8� � ’ � � in steps of 0:0125�). The dashed box
indicates where the spectra in the inset are taken. Away from
resonance there is a Stark shift �!ð’Þ of the base frequency.
(b) The Stark shift is shown at different electron-oscillator
coupling strengths for T ¼ 0:05� and (c) at different tempera-
tures for a electron-oscillator coupling strength � ¼ 0:05�. In
both cases !0 ¼ 0:2�. The dashed line in (b) and (c) indicates
the resonant phase.
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for � ¼ 0:05�. Our analytic estimate in Eq. (9) gives in the
limit of large detuning

!0ð’Þ ¼ !0 þ �!ð’Þ ¼ !0 � 2
�2A2

EneðEAÞ
2EA �!0

: (10)

This analytical expression for �!ð’Þ is a good approxi-
mation when the continuum contributions can be ne-
glected, i.e., for �=� � 1, while in general one must use
numerics to extract �!ð’Þ. Dispersive measurement of the
acquired phase-dependent resonance frequency of the os-
cillator, !0ð’Þ, gives a possibility to detect the position of
the polariton resonance and hence define the energy of the
ABS. Furthermore, by sweeping the base frequency of the
oscillator the phase dispersion of the ABS energy can be
detected.

Assume that we bridge two aluminum superconductors
by a gated SWCNT, as shown in the inset of Fig. 1. The
gate is part of an LC circuit which leads to an oscillation of

the gate voltage with frequency !0 ¼ 1=
ffiffiffiffiffiffiffi
LC

p
. A practical

value for the resonator frequency is 	10 GHz, for which
the polariton resonance is located well inside the super-
conducting gap (for aluminum �Al � 50 GHz), and at the
same time the ABS energy splitting is large compared to
the temperature below 100 mK. In our calculations we
neglect electron-electron interactions. This can be done if
� is large compared to �, which can experimentally be
realized by tuning � by a back gate [12] to approach the
weakly interacting Fabry-Perot regime. The main modifi-
cation of the one-iteration approximation in the case � 

� is that AE becomes strongly phase dependent, tending
to ð�=2�Þ sinð’=2Þ as �=� grows. This gives the effective
coupling �AE 	 ��=� close to the resonance. This cou-
pling must be large compared to the intrinsic oscillator
damping, ��=� 
 	 ¼ !0=Q, in order to resolve �!ð’Þ.
The strength of the bare coupling � is determined by the
capacitive interaction between the gate and the dot, and it is
proportional to the ratio of corresponding capacitances,
Cg=C�, and can be expressed through the oscillator fre-

quency as � ¼ ðCg=C�ÞðEC=8ELÞ1=4!0 (EC and EL are

charging and inductive energies of the oscillator, respec-
tively). For SWCNT superconducting contacts the gate
capacitance can be comparable with the capacitances of
the contacts to the leads, having values of tens of aF [34].
Thus the coupling � can be on the order of 10% of the
oscillator frequency as assumed in our calculation. When
the gate of the contact is connected to a superconducting
cavity, the quality factor of the oscillator can be of the
order of 1000–10 000 [17–20]. Given our calculated value
for effective ABS-oscillator coupling, �AE, we get the
ratio �AE=	 � 100–1000, indicating that the strong-
coupling regime is indeed feasible, the resolution of the
proposed spectroscopy should be very favorable to encour-
age experiments.
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