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Disorder-Induced Stabilization of the Pseudogap in Strongly Correlated Systems
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The interplay of strong interaction and strong disorder, as contained in the Anderson-Hubbard model, is
addressed using two nonperturbative numerical methods: the Lanczos algorithm in the grand canonical
ensemble at zero temperature and quantum Monte Carlo simulations. We find distinctive evidence for a
zero-energy anomaly which is robust upon variation of doping, disorder, and interaction strength. Its
similarities to, and differences from, pseudogap formation in other contexts, including perturbative
treatments of interactions and disorder, classical theories of localized charges, and in the clean

Hubbard model, are discussed.
DOI: 10.1103/PhysRevLett.101.086401

“Pseudogap” anomalies in the single particle density of
states are a central feature of seemingly disparate materials
and models. On the one hand, they have an early history in
the metal-insulator transition and the study of the interplay
between disorder and interparticle interaction. In the me-
tallic limit of weak coupling and weak disorder, Altshuler
and Aronov (AA) showed [1], by means of perturbation
theory, that there is a depression of the spectral density at
the chemical potential, the magnitude of the depression
being dependent on the interaction strength. In the opposite
limit of completely localized charges, Efros and Shklovskii
(ES) have shown that the combined effect of the un-
screened Coulomb potential and disorder also gives rise
to an anomaly at the chemical potential—the Coulomb gap
[2,3].

In contrast to this situation in which randomness and
correlation are crucial, pseudogap anomalies also arise in
cuprate superconductors and the Hubbard model with no
disorder. While particle density does not play a central role
in either the AA and ES pseudogaps, in the high T.
materials and related models [4-6] the pseudogap is in-
stead confined to a low-doping region.

That disorder is essential to the pseudogap in one situ-
ation, yet present in the clean system in another, raises a
fundamental question: What role does randomness play in
low energy anomalies in the density of states of strongly
correlated systems ? In this Letter, we suggest that random-
ness stabilizes the pseudogap. Indeed, we demonstrate two
remarkable features of the pseudogap in the disordered
Hubbard model. First, the density of states anomaly per-
sists in the limit of an infinitely repulsive local potential U,
even though the magnetic energy scale J « ¢>/U is driven
to zero. Second, it is independent of doping for a wide
range of disorder and interaction strengths. The insensitiv-
ity of the pseudogap to doping is a novel effect related to
the presence of disorder that has been observed experi-
mentally [7].

We consider the Anderson-Hubbard Hamiltonian,

PACS numbers: 71.27.+a

where the on-site energies €; are sampled uniformly from
the interval [—A/2: A/2], clt,(c,»a) are fermion creation
(annihilation) operators for site i and spin o, and n;, =
c;rgci(,. The primed summation is on nearest neighbors
only. We diagonalize this Hamiltonian on 10-site square
clusters (see Fig. 1) using the Lanczos algorithm at 7 = 0
and on larger, 64-site clusters using finite temperature
determinant quantum Monte Carlo (DQMC) simulations.
As usual, physical properties are computed as averages
over many disorder realizations.

Since both computational methods are described in a
number of previous publications [8,9] we focus our tech-
nical discussion only on the use of the grand-canonical
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FIG. 1 (color online). Evolution of the local spectral density,
A(w), at p = 1 for U = 8 as a function of A. Left panel: A < U.
The Mott gap evident for A = 0 and 4 is partially filled in as the
randomness increases, so that the value at the Fermi surface,
A(w = 0), becomes finite at A = U. The DQMC calculation is
carried out on a squared 64-site cluster at T = /6. Right panel:
A > U. A pseudogap survives even for large randomness. The
spectra are the average of 1000 independent disorder realiza-
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H({e;}) = _tZ CzTono + Zfi”io + |U|Z”i1”il’ ) tions. Inset: Geometry of the cluster employed in the Lanczos
ijo ir J calculations.
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ensemble to carry out the averaging process at T = 0. A
given choice of chemical potential u has, in this case, the
effect of singling out that particle number sector whose
ground state minimizes (H — wN). Which particular sec-
tor is selected is, of course, dependent on the disorder
realization defining H({¢;}) and it is not known a priori.
This requires diagonalization of all sectors and allows the
treatment of noncommensurate fillings. Since the size of
the system is fairly small we also take advantage of the
possibility of changing the boundary conditions of the
wave function to reduce finite size errors. The final results
are then determined as grand canonical averages over
disorder realizations and boundary conditions [10,11].

We argue that the density of states obtained on the
cluster sizes used here is relevant both because of the
restoration of the thermodynamic limit by boundary con-
dition averaging, and because finite size errors become
increasingly small in the strong disorder case on which
we focus. It is also worth noting that, unlike studies of other
phenomena like long range magnetic or superconducting
order in the Hubbard Hamiltonian, which critically rely on
finite size scaling on large lattices, the density of states is
less sensitive to system size. The AA calculation provides a
particularly clear example of this statement as the zero-
energy anomaly was predicted using a class of diagrams
that failed to capture localization.

The averaged spectral density is given by

1 N,
Alw) = > f dfdeA;(0,{e}, w), (2
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where N, and (g, are, respectively, the number of sites
and the volume of the Brillouin zone within which 6, the

phase defining the boundary condition, is allowed to vary.
The fermion addition part of A;(0, {€;}, ) is defined as

1
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and computed using the continued fraction algorithm of
Haydock et al. [12]. The electron subtraction spectrum is
obtained analogously by interchanging c¢; and c?. InEq. (3)
E, is the ground state energy of H = H(0, {¢;}) and 7 is a
small real parameter giving the broadening of the & func-
tions constituting the spectrum. A(w) is directly measured
in tunneling spectroscopy, photoemission and inverse pho-
toemission experiments. Since disorder averaging restores
particle-hole symmetry, it suffices to consider the evolution
of A(w) at densities p = 1. In DQMC calculations, A(w) is
obtained by a maximum entropy analytic continuation of
the imaginary time Green’s function [13] computed using
periodic boundary conditions (6 = 0).

There are three different independent parameters (¢ sets
the unit of energy) that we examine when analyzing the
spectral density: the interaction U, the disorder A and the
doping p. We start by considering the dependence on A for
the half-filled case and constant U = 8. On increasing A,

for A < U, the Mott gap present at A = 0 is gradually
filled in, and the evolution of the spectral density follows
the expected trend (see left panel of Fig. 1). For A > U one
might expect the residual dip to disappear completely, at
least at large enough disorder, but this is not what is found
numerically. The right panel of Fig. 1 shows the behavior
for A = 10, 12, 14, 16: Increasing the disorder above A =
U leaves a residual pseudogap independent of the disorder
strength. There is a sharpness in the behavior of A(w) at
small @ which suggests that the anomaly could be non-
analytic at T = 0. However, finite size rounding prevents a
precise characterization of this feature.

The appearance of a pseudogap is remarkably different
from what is found using dynamical mean field theory
(DMFT) in a similar range of parameters [14] for the
same Hamiltonian. DMFT predicts, at least in the
Hubbard-I approximation [14], that A(w) evolves smoothly
as the energy crosses the chemical potential, with no
pseudogap. This indicates that the anomaly is likely to be
determined by nonlocal, short-ranged correlations and con-
nected to reduced dimensionality.

Let us now move to the incommensurate filling p = 0.6,
where there is no Mott gap. A(w) is plotted in Fig. 2. A
pseudogap is now evident at all disorder strengths. For A >
U it behaves as for the p = 1 case and saturates for strong
enough disorder. In the A < U regime the pseudogap gets
deeper with increasing disorder but its width remains
largely unchanged. In contrast, the depth of the pseudogap
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FIG. 2 (color online). Evolution of the local spectral density
away from half-filling (no Mott gap at A = 0). Left panel: A(w)
as a function of A. A ranges from well below U to well above.
The dip in A(w) at @ = 0 becomes deeper as A increases. In the
clean limit A = 0 we observe no pseudogap this far from half-
filling, in agreement with [4—6]. Right panel: DQMC results on a
8 X 8 = 64 site lattice at T = t/6 averaging over 64 disorder
realizations. The scale (width) of the pseudogap is largely
independent of doping. For p = 0.6 the 10-site Lanczos result
is also reported. Despite the different cluster size the agreement
between the two techniques is excellent.
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which develops out of the Mott phase at p = 1 decreases as
A increases [15]. Such a difference is not surprising since,
at p = 1, there is a crossover from a U > A regime,
dominated by the Mott-gap scale to the A > U regime
characterized by the pseudogap scale. On the other hand,
away from half-filling, the formation of the pseudogap is
always the leading instability and continues to persist in the
highly disordered regime. It remains unclear why the depth
of the pseudogap saturates instead of moving monotoni-
cally to 0 as A increases. Certainly the behavior of the
anomaly away from half-filling makes evident that the
naive picture in which the effect of disorder is only to
smear the spectral density is inappropriate.

We have carefully studied the doping dependence of the
pseudogap, especially since in the clean model it is present
only for small doping. In contrast, for A = 10 and U = 8
the spectral density shows a nearly universal pseudogap:
A(w) for p = 0.6-1.0 coincide over the entire pseudogap
region. This feature persists in the A = U regime as soon
as the system is sufficiently away from the Mott-gap
dominated regime. Typically, at p = 0.9, a distinct dip at
o = 0 is seen at all disorder strengths considered in this
work. At densities p = 0.6 and U = 5 the sign problem in
the DQMC method is mild and does not prohibit obtaining
accurate spectral functions [16]. The agreement between
the two numerical techniques at p = 0.6 and A = 8 (see
right panel of Fig. 2) is excellent and gives a firmer basis to
our speculations on the irrelevance of the cluster size that
was exactly diagonalized. DQMC results from p = 0.6 to
p = 0.4 also confirms the stability of the pseudogap under
doping. That strong disorder can stabilize the pseudogap
was also observed experimentally [7] in a conductivity
study of YBCO samples where Cu was substituted with
Zn. The T — p phase diagram of this heavily disordered
system shows a flat pseudogap crossover line in agreement
with our finding of a doping-independent pseudogap en-
ergy scale.

That variation in A or p both leave the anomaly un-
changed can be understood as follows. Consider the half-
filled case with t = 0 and A > U in which a finite fraction
of the sites remains empty. When ¢ # 0, electrons lower
their energy by delocalizing on neighboring empty sites,
regardless of the overall density, as the physics is primarily
local. Doping does not alter this situation but merely shifts
the “‘action” on the new set of sites lying close to .
Although the details of the effect of ¢ are ultimately re-
sponsible for the formation of the pseudogap, one can see
that if the pseudogap forms and is stable upon variation in
disorder then it follows that the same anomaly forms and is
stable upon variation of doping.

The distinctive feature of the strongly disordered
Anderson-Hubbard Hamiltonian is that particle localiza-
tion is independent of doping. In the nondisordered case,
localization is induced by correlation and gradually dis-
appears as the density moves away from half-filling.

Despite this different doping dependence, there are sim-
ilarities with the ordered case that point to a common
localization-related origin of the pseudogap. We found
that the pseudogap scale is independent of U for very large
U with A(w = u) > 0 at any finite doping. To make this
point more quantitative we show the U = 8 and U = 16
pseudogaps in the left panel of Fig. 3 at the common
disorder strength A = 8. Apart from a deepening of A(w)
with increasing U, the pseudogap scale is essentially un-
changed. Independence of the pseudogap from U and A in
the strongly disordered and strongly interacting regime
leaves ¢t as the only relevant energy scale. Indeed, halving
t (right panel of Fig. 3) induces an almost linear reduction
on the energy scale characterizing the anomaly. This sug-
gests a kinetic mechanism for pseudogap formation and it
rules out superexchange since the magnetic energy scale J
tends to O in this limit. Spin, however, has to play a crucial
role as spinless fermions act as noninteracting when U is
on-site and they would show a smooth A(w) with no
suppression at the Fermi energy.

An interesting feature of the clean Hubbard model and
of experiments on cuprates is the momentum dependence
of the pseudogap. In the hole doped case, for example,
sharp excitations survive as one crosses the Fermi energy
along the nodal direction whereas a pseudogap develops
along the antinodal one. The behavior of the averaged
Ai(w) in the strongly disordered regime (A = 8) is given
in Fig. 4. As k cuts through the Fermi surface either along
the antinodal [(0, 0) to (7r, 0] or nodal [(0, 0) to (7, )]
lines, a depression in Ay (w) is seen as kg is traversed. This
is therefore at odds with the results on the clean model and

0.20 T T 020

A=8 p=0.8
— t=1 U=8
— t=1U=16
t=1 U=16 (shifted)
— t=%%U=8
— t=Y2 U=8 (rescaled)

0.15

0.10 0.10

0.05 0.05

Sw/A 8w/ A

FIG. 3 (color online). Scaling of the pseudogap as a function
of interaction and hopping. The key observation is that the
pseudogap is unchanged when U increases from U = 8 to U =
16 (left panel), and hence the antiferromagnetic exchange J is
halved, but has a width which is proportional to ¢ (right panel).
The shifting in the third data set is done so as to make the two
minima, for U = 8 and U = 16, coincide. In the last data set the
energy axis was rescaled by a factor of 2.
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FIG. 4. The momentum resolved spectral function A;(w) ex-
hibits a pseudogap as the Fermi surface is crossed. Here U = 8,
A =38,and p =0.8.

experimental data. A qualitative explanation for such a
difference may reside in the different nature of localiza-
tion: while this is certainly isotropic in the strongly disor-
dered case, it is not necessarily so in the clean model where
it is perhaps related to dynamical inhomogeneities.

In conclusion, we have shown the formation of a robust
pseudogap in systems with strong repulsive local interac-
tion and strong disorder. This parameter regime lies outside
the range of applicability of the perturbative AA calcula-
tion. It also lies outside the Coulomb gap scenario since the
potential is local, and there is no Coulomb gap for the on-
site Hubbard interaction when the itinerancy of the elec-
trons is switched off.

Although our exact Lanczos analysis is carried out only
on clusters small enough to be exactly diagonalized, the
phenomenon is also present on much larger clusters treated
with the exact DQMC method. The pseudogap energy
scale is set by ¢, a result shared with other recent numerical
studies of nondisordered, strongly interacting systems
[5,6]. In particular, it persists even when J — 0, and so
does not appear to be linked to antiferromagnetic fluctua-
tions. Finally, it is suggestive that recent experiments [7]
observed a doping-independent anomalous behavior in the
conductivity of highly disordered cuprates consistent with
what is reported here.

In the uniform Hubbard model, and the cuprate materials
which it may describe, spatial inhomogeneities arise spon-
taneously, without any explicit symmetry-breaking in the
Hamiltonian itself [17,18]. Likewise, the pseudogap is a
feature of the model [4-6] and the materials. Both phe-
nomena disappear with doping. Disorder however induces
(i) the stabilization of the pseudogap over a much larger
range of densities and (ii) its independence on the momen-
tum. These facts, together with the persistence of the

pseudogap at large values of U in both disordered and
uniform models, are compatible with a scenario where
the pseudogap in the strong-coupling regime is linked to
electron localization and driven by a kinetic mechanism.
Such a picture, which invokes spatial inhomogeneities,
thus connects the appearance of the pseudogap in the two
seemingly rather different contexts of metal-insulator tran-
sitions driven by the interplay of randomness and correla-
tion, and the cuprate superconductors.
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