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By means of in situ small-angle x-ray diffraction experiments and semi-grand-canonical ensemble

Monte Carlo simulations we demonstrate that sorption and condensation of a fluid confined within

nanopores is capable of deforming the pore walls. At low pressures the pore is widened due to a repulsive

interaction caused by collisions of the fluid molecules with the walls. At capillary condensation the pores

contract abruptly on account of attractive fluid-wall interactions whereas for larger pressures they expand

again. These features cannot solely be accounted for by effects related to pore-wall curvature but have to

be attributed to fluid-wall dispersion forces instead.
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Fluids confined by solid substrates to spaces of nano-
scopic dimension(s) exhibit properties markedly different
from those of corresponding bulk fluids. These altered
properties are important for many fascinating novel appli-
cations such as nanoreactors in catalysis [1], nanorheolog-
ical [2], or drug delivery devices [3]. To design such
devices an indispensable prerequisite is to understand
how nanoconfinement affects properties of fluid matter.
In this regard, understanding the unique phase behavior
of confined fluids is of central importance. It becomes
manifest, for example, as a narrowed gas-liquid two-phase
region and a shift of the critical point relative to its location
in the bulk [4–7]. However, not much attention has been
paid so far to the response of the confining solid substrate
to changes in the thermodynamic state of the fluid phase.
This seems surprising in view of the fact that any substrate
will ‘‘feel’’ the action of molecular forces. Therefore, one
anticipates a deformation of pore walls during the sorption
and condensation of a confined fluid phase. Such sorption
strains have indeed been observed experimentally [8–10]
and have been discussed in terms of both continuum elas-
ticity [8] and phenomenological thermodynamics [9]. It is
also well known that in solid-solid phase transitions elastic
strains may cause a shift of the phase boundaries [11]. This
poses the important question how finite stiffness of a pore
wall might affect sorption and capillary condensation (CC)
in nanoconfinement. In this Letter we demonstrate for the
first time that sorption strains can induce an appreciable
deformation of a solid substrate which in turn causes a
significant shift of CC towards the bulk saturation pressure
P0. Moreover, our theoretical model is capable of repro-
ducing semiquantitatively the measured variation of sorp-
tion strains with (bulk) pressure P.

In the experiments we employ MCM-41 silica [12]
consisting of a two-dimensional hexagonal lattice of cy-
lindrical pores (lattice parameter a ¼ 4:67 nm) and use
C5H12 and C5F12 as adsorbates. In situ small-angle x-ray

diffraction (SAXD) measurements were conducted with
synchrotron radiation at the �-spot beam line of the
BESSY II storage ring in Berlin. Details about the in situ
sorption cell, SAXDmeasurements, and data treatment can
be found elsewhere [13]. Figure 1 shows the diffraction
profiles resulting from the pore lattice for P=P0 below and
above CC. At CC the pores fill spontaneously with a
liquidlike phase. This causes the intensity of the Bragg
reflections to decrease abruptly because of the reduction of
the electron density difference between the silica matrix
and the confined fluid. This information can be used to
identify Pþ

0 at CC (i.e., the bulk pressure at CC) [see Fig. 2

(a)]. Besides a change in intensity the position of the Bragg
reflections is also affected by changing P (see inset in
Fig. 1). In Fig. 2(b) we plot the mean peak position as a
function of P=P0. A highly nonmonotonic behavior with a
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FIG. 1. X-ray diffraction pattern of C5H12 in MCM-41 [q ¼
ð4�=�Þ sin�, scattering angle 2�, wavelength � ¼ 0:1 nm] for
two relative pressures P=P0. Reflection indices are indicated.
The inset illustrates the shift of the 20 peak at CC.
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sudden increase at CC and a subsequent slow decrease is
observed in these data. The independence of this effect on
the ‘‘speed’’ of the sorption process was verified by varying
the rate dP=dt (t denotes time) by a factor of 5. Because the
peak shift is symmetric without appreciable change in peak
width (see inset in Fig. 1) it simply reflects a change in the
separation D ¼ 2�=qm of the pore lattice planes. All three
reflections in Fig. 1 exhibit the same qualitative and quan-
titative shifts suggesting a purely radial (hydrostatic) de-
formation of the pores. This permits us to define the
homogeneous strain of the pore lattice through " �
DðPÞ=Dð0Þ � 1 ¼ qmð0Þ=qmðPÞ � 1. At CC we obtain
"c ’ �0:58� 10�3 indicating a contraction of the pore
lattice which arises immediately after all pores are filled
(see Fig. 2). At bulk condensation (i.e., at P=P0 ¼ 1), on
the other hand, the strain "e ’ 1:35� 10�3 reflects a con-
siderable expansion of the lattice now fully immersed in
liquid such that j"ej> 2j"cj.

The characteristic features of the curves displayed in
Fig. 2(b) are generic as supported by additional experi-
ments with other classical fluids (H2O, CH2Br2) and differ-
ent porous media (MCM-41, SBA-15). Moreover, curves
similar to the ones in Fig. 2(b) were reported for C5H12 in
porous silicon [9] as well as for quantum (4He) and semi-
classical fluids (Ne) in aerogels [10]. All of these fluids are
attracted by the pore walls as reflected by P=P0 < 1 which
is crucial for pore contraction to occur.

In Refs. [9,10] sorption strains were rationalized on the
basis of macroscopic concepts where pore curvature is a

key ingredient. When the specific interfacial energy of a
porous solid increases, the solid contracts to reduce its
surface area. Reversly, a decrease of the interfacial energy
due to fluid adsorption in nanopores leads to an expansion
of the porous matrix. For cylindrical pores [8]

"e ¼ �

R

1� 2�

Eð1� fÞ (1)

assuming complete wetting (i.e., a vanishing contact angle)
and a linear relationship between Young’s modulus E and
the density of MCM-41 [14]. From now on we focus
exclusively on C5H12 in MCM-41 as a representative ex-
ample. Using a pore radius R ’ 1:95 nm and a porosity f ’
0:62 both determined by nitrogen sorption, � ’
15� 10�3 Jm�2 for the surface tension of C5H12, and E ’
95 GPa and a Poisson ratio � ’ 0:25 of the silica matrix
[14], we estimate "e ’ 0:11� 10�3. This value is smaller
than the experimental one (" ’ 1:35� 10�3) by roughly
an order of magnitude.
The contraction of the pores at CC (see Fig. 2) has often

been explained by the action of a negative hydrostatic
pressure defined by the Laplace pressure 2�=R�, where
R� is the radius of the hemispherical meniscus separating a
liquidlike and a vaporlike phase [9,10,15]. The difference
between "e and "c is then mainly governed by a change in
sign and a different mean curvature of the film adsorbed on
cylindrical pore walls (/1=R) in the expanded and the
hemispherical shape of the meniscus (/2=R�) in the con-
tracted state. Because �, �, E, and f remain unchanged as
sorption progresses, and R� � R at CC, one expects "c �
�2"e. This is not confirmed experimentally, and the esti-
mated value "c ’ �0:22� 10�3 is again considerably
smaller than the experimental one. Because experimental
values of "c and "e are in serious disagreement with the
above estimates, we conclude that curvature effects cannot
fully explain the observed variation of sorption strains in
nanoscopic pores. Moreover, macroscopic concepts de-
lineated above cannot account for the experimental varia-
tion of " over the range 0 � P=P0 � 1.
If not the curvature of the pores, what other feature may

be responsible for the variation of sorption strains dis-
played in Fig. 2(b)? In this regard it has already been noted
quite some time ago by Ash et al. [16] that a contribution
from dispersion forces may lead to repulsion or attraction
between a fluid phase and its confining substrates.
Balbuena et al. [17] showed that the associated solvation
pressure exhibits a dependence on P=P0 very similar to the
variation of the strain measured in this work. Assuming
deformable pore walls and Hooke’s law to be valid, the
data presented in Ref. [17] prompt us to conclude that
dispersion forces may largely be responsible for the ex-
perimental variation of " with P=P0.
To test this hypothesis we perform Monte Carlo simu-

lations in a semigrand canonical ensemble (SGCMC) in
which the thermodynamic state of the system is described
by its temperature T, chemical potential � of the confined
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FIG. 2. Integrated intensity ~I (a) and position qm (b) of the 10
Bragg peak of C5H12 (�) and C5F12 (d) at T ¼ 17� 0:1 	C.
For a definition of "c and "e see text.
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fluid, a fixed number of substrate atoms Ns, and an elastic
energy term that determines size and shape of the model
system (see, for example, Chap. 6 in Ref. [7]). The fluid is
composed of spherically symmetric molecules of the
Lennard-Jones (LJ) type where we adjust � to 0.3 nm to
mimic fluid C5H12 [18]. This fluid is confined by two
substrates (slit-pore) separated by a distance sz ¼ 6:8�.
The substrate separation is chosen by equating the ratio of
pore volume to substrate area of the model system to that
characteristic of the experimental system. Thereby the
‘‘degree of confinement’’ in both systems is preserved
irrespective of differences in pore geometry [19].

In the model each substrate is composed of atoms of the
same size as the fluid molecules. These atoms are distrib-
uted such that their equilibrium positions comport with the
(100) plane of the face-centered cubic lattice. On account
of their thermal energy and interactions with fluid mole-
cules, substrate atoms are able to depart from their equi-
librium positions. In other words, substrate atoms
‘‘respond’’ to the configuration of confined fluid mole-
cules. More specifically, the configurational energy of the
model system may be cast as UðR;Rs;�Þ ¼ UffðRÞ þ
UfsðR;RsÞ þUssðRs;�Þ where the indices refer to fluid-
fluid (ff), fluid-solid (fs), and solid-solid (ss) interactions,
respectively. The 3N- and 6Ns-dimensional vectors R and
Rs represent configurations of N fluid and 2Ns substrate
atoms, respectively. Here, UffðRÞ and UfsðR;RsÞ are com-
puted via pairwise additive LJ interactions; UssðRs;�Þ
consists of two contributions. One accounts for the inter-
action between neighboring substrate atoms. We again
model these interactions via the LJ potential assuming
the same potential parameters "LJ and �LJ as for Uff and
Ufs. The second contribution to Uss arises from a harmonic
potential binding substrate atoms to their equilibrium lat-
tice sites. The binding strength is controlled by a suffi-
ciently large ‘‘stiffness’’ parameter � to prevent the
substrates from melting. In the limit � ! 1 substrate
atoms stay at their equilibrium sites such that the substrates
remain undeformed and therefore UðR;Rs;�Þ ! UðRÞ ¼
UffðRÞ þUfsðRÞ. In this limiting case the confining sub-
strates can be treated as a static external field imposed on
the fluid molecules as it is done in the overwhelming
number of theoretical studies of nanoconfined fluids to
date [7]. However, in the more general case where U
depends on both R and Rs the theoretical treatment is
more complicated. This is because then the configuration
integral involves an integration of the Boltzmann factor
exp½�	UðR;Rs;�Þ
 over configurations of both fluid
molecules and substrate atoms [18,20]. In other words,
for finite � the substrates cannot be treated as an external
field so that the SGCMC simulations are quite computa-
tionally demanding.

The SGCMC simulations proceed in a standard manner
[7]. However, because Ns is fixed creation and destruction
are not attempted for substrate atoms. Using concepts of
thermodynamic perturbation theory explained elsewhere
[18] we have access to the bulk pressure Pþ

0 at CC. Note

that Pþ
0 will generally differ between experimental and

model systems because of various assumptions made for
the model system. Another key quantity is the effective
pore width seffz ð�Þ where

lim
�!1s

eff
z ð�Þ � 1

Ns

lim
�!1

�XNs

i¼1

jz½2
i � z½1
i j
�
�
¼ sz (2)

and z½k
i is the z coordinate of atom i in substrate k. Angular
brackets indicate an average over configurations in the
semigrand canonical ensemble. With the aid of Eq. (2)
we define the strain 
 � seffz ð�Þ=sz � 1 as a quantitative
integral measure of pore deformation which can be com-
pared with the experimentally measured lattice strain ".
Figure 3 shows that for P=Pþ

0 > 0 the effective pore width
increases slightly initially. At CC (i.e., at P=Pþ

0 ’ 1) the
pore abruptly shrinks and then expands again as P in-
creases further. It is remarkable that both experimental
and theoretical data plotted together in Fig. 3 agree very
well qualitatively and even quantitatively for a certain
range of pressures despite the smallness of the strain.
The agreement is particularly gratifying because the theo-
retical model is rather crude in that it assumes the LJ
potential with the same set of potential parameters
f"LJ; �LJg for all intermolecular interactions, perceives
C5H12 molecules as spheres, and uses a single slit—rather
than an ordered array of cylindrical pores.
How does pore deformation affect CC? To address this

question we compute the grand-potential density ! of the
confined fluid as we explain in detail in Ref. [18]. In
general, ð@!=@�Þf�g ¼ �� where � is the mean density

of the fluid phase and f�g is shorthand notation to indicate
that all other thermodynamic variables are held constant.
Along any subcritical isotherm ! is a continuous function
of P (or �) [7]. However, its slope will change discontin-
uously at Pþ

0 at which phases of different (mean) density

(e.g., confined gaslike and liquidlike phases) coexist. As
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FIG. 3. Sorption strains trains " for C5H12 as a functions of
P=Pþ

0 ; (experiment) (d), 
 (theory) (�) (��2
LJ="LJ ¼ 30). The

full line is intended to guide the eye. In the limit � ! 1 (rigid
substrate), 
 ¼ 0 (dashed line).
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anticipated, Fig. 4 reveals a discontinuous change of the
slope of ! at CC. Branches of ! for P< Pþ

0 and P> Pþ
0

refer to gaslike and liquidlike phases, respectively.
However, Pþ

0 depends on the deformation of the substrate.

The shift of Pþ
0 relative to the value for rigid substrates can

be rationalized as follows. In the limit � ¼ 0 substrate
atoms are no longer bound to their equilibrium lattice sites
but are free to move. The original confined fluid therefore
becomes equivalent to the bulk. In fact, ‘‘substrate’’ atoms
and fluid molecules become indistinguishable on account
of our choice of the same LJ potential parameters for all
intermolecular interactions. One therefore anticipates
Pþ
0 =P0 ¼ 1 if � ¼ 0. For finite �, on the other hand, the

confined fluid should therefore exhibit a phase transition
somewhere in between the value of Pþ

0 characteristic of the

rigid substrate and Pþ
0 =P0 ¼ 1 as shown in Fig. 4. Finally,

we stress that results for the model system plotted in Figs. 3
and 4 are qualitatively independent of T and sz [18]. Thus,
both the variation of 
 (") with P and that of Pþ

0 with � are

generic features associated with sorption strains.
We conclude that using a simple model system in

SGCMC, the strain behavior measured for C5H12 in
MCM-41 can be quite well reproduced over a wide range
of thermodynamic states. In particular, our simulations
reveal a continuous expansion of the pore with increasing
P intermitted by a sudden contraction upon CC, in nearly
perfect agreement with the experiment, even though the
geometries are markedly different (slit pores vs cylindrical
pores). This suggests that dispersion forces make a domi-
nant contribution to the sorption strains, while curvature
effects are less important. In addition, pore deformation
causes a shift of the phase transition towards that in the
bulk. Compared with the ideal case of rigid pore walls the
shift is of the order of a few per cent and should thus be
observable experimentally in principle. However, to
change the stiffness of an experimental system while keep-

ing all other parameters fixed is challenging and could not
be realized here.
Nevertheless, the present study demonstrates a syner-

gistic effect, that is the substrate responds to the thermody-
namic state of the confined fluid which in turn affects the
fluid’s phase behavior. This synergistic effect is also ex-
pected to affect other types of phase transitions in nano-
confinement. For example, undercooled nanoconfined
water does not freeze in the immediate vicinity of but
only at larger distances from the pore walls, presumably
on account of severe strains that prevent such vicinal water
from forming solidlike structures [21]. These strains
should be capable of deforming the pore walls similar to
what is observed here. Another example are nanoconfined
mesophases of anisometric molecules where molecular
packing and orientation should exert strains on the pore
walls. Implications from sorption strains on the phase
behavior and vice versa might be expected particularly
for fluids in very compliant nanoporous systems. A case
of special interest in this respect is the action of water in
biological tissues, e.g., the movements of plants driven by
changes in humidity [22].
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