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Stress Induced Stripe Formation in Pd/W(110)
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A stress-induced stripe phase of submonolayer Pd on W(110) is observed by low-energy electron
microscopy. The temperature dependence of the pattern is explained by the change both in the boundary
free energy and elastic relaxation energy due to the increasing boundary width. The stripes are shown to
disorder when the correlation length of the condensed phase becomes comparable to its period, while the
condensate to lattice-gas transition takes place at a higher temperature, as revealed by low-energy electron

diffraction.
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It is well known that surface stress may give rise to
periodic structural modulations [1]. The most common
examples are surface reconstructions on clean and
adsorbate-covered crystal faces. In the presence of com-
peting long-range and short-range interactions, restructur-
ing of the surface can take place at mesoscopic length
scales [2].

Several experiments have shown the formation of meso-
scopic patterns as a result of elastic interactions. Examples
include (2 X 1)-O domains on Cu(110) [3], ordered two-
dimensional (2D) islands of Ag on Pt(111) [4], stripes of
alternating dimer direction on B doped Si(001) [5,6],
square patterns of N/Cu(100) [7], stripe domains of
Pb/Cu(111) [8], and Au stripes on W(110) [9]. In all these
cases, the length scales of the periodic modulations range
from a few to hundreds of nanometers, well above the
atomic distances. This is understood within the analytical
theory [2], which states that the period of a given stripe
pattern depends exponentially on the ratio of the short-
range (boundary) and long-range (elastic) interaction en-
ergies. The period D can be written as

D = 27raelC1/CIT1 =y o(C1/C)+T (1)

where a is a microscopic length, C, is the formation energy
of the stripe boundary, and C, is the prefactor of the energy
gained by the elastic relaxation due to the formation of
stripes [2]. The prefactor of the exponent comes from a
smearing of the stripe boundaries, and so is related to the
boundary width. This result is identical to that obtained for
magnetic layers with dipolar interactions [10,11]. We note
that the correspondence between the dipolar Ising lattice
and the 2D lattice gas is one-to-one, as the elastic interac-
tion energy between lattice defects scales as 1/r° [12].
Studies of mesoscopic patterns show that the periodicity
varies strongly with temperature. Moreover, there exists a
transition temperature, at which the stripe phase disap-
pears. This temperature dependence has been attributed
to the reduction of the boundary free energy through
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density fluctuations as the disordering temperature is ap-
proached [13]. Earlier work on Ising spin lattices showed
that the effect of fluctuations can be introduced by an
entropic term, which results in a temperature dependent
period for the magnetic stripes [14].

The density fluctuations, which reduce the boundary free
energy, also increase the boundary (or domain wall) width
with increasing temperature [15]. Gehring and Keskin took
this broadening into consideration, and they argued that the
stripe disordering transition takes place when the boundary
width becomes half the stripe period [16].

All studies up to date treat the temperature regime close
to the transition separately, pointing to a ‘“‘crossover’ as
the boundary width becomes comparable to the stripe
period (a discussion can be found in [10]). In this Letter,
we report the observation of a stripe phase in submono-
layer Pd films grown on W(110). We demonstrate that the
temperature dependence can be reproduced throughout the
whole temperature range by a scaling of the boundary
energy and boundary width. Using low-energy electron
microscopy (LEEM), we show that the triangular step-
flow patterns [17] observed below 1100 K turn into stripes
that run along the [110] direction above this temperature.
The period of the pattern sharply decreases from 200 nm to
57 nm with increasing temperature until the stripes disor-
der at around 1170 K. The dependence of the period on Pd
coverage is much weaker contrary to the expectation from
the theory with sharp boundaries (a similar behavior was
found for Au/W(110) [9]).

The thermodynamics of Pd/W(110) can be described as
that of a lattice gas with attractive interactions, and shows a
condensate-gas transition with increasing temperature
[18,19]. Structurally, a Pd monolayer on W(110) shows
one-dimensional pseudomorphism along the [001] direc-
tion, whereas along [110] extra low-energy electron dif-
fraction (LEED) spots are observable even at the highest
temperatures corresponding to the Pd lattice relaxed
through periodic dislocation lines [19]. This indicates a
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stress anisotropy with a low surface stress along [110],
readily explaining the direction of the observed stripes in
our study.

The LEEM measurements were performed with the
SPELEEM microscope at Elettra (Italy) [20]. The instru-
ment allows real-time monitoring of the growth and evo-
lution of adsorbate layers with a lateral resolution of
12 nm. The W(110) sample was cleaned by annealing at
1000 °C in 2 X 10~® mbar oxygen, followed by repeated
high temperature flashes in ultrahigh vacuum to remove
oxygen. The absence of oxygen was confirmed by the
sharp, low background (1 X 1) LEED pattern. Pd was
deposited on the tungsten surface using an e-beam evapo-
rator at a rate of 0.2 monolayer per minute. The rate was
calibrated via the time needed to complete the first mono-
layer at 800 °C.

A series of LEEM images of alternating Pd stripes in
condensed and lattice-gas phases are shown in Fig. 1. The
period of the pattern and the contrast between the two
phases sharply decrease with increasing temperature up
to about 1170 K, at which point the stripes fully disorder.
The variation of the periodicity is facilitated by the high
mobility of the condensed regions. This leads to stripe
fluctuations around the reversible stripe disordering
transition.

The natural logarithm of the stripe period, D, is dis-
played in Fig. 2 as a function of temperature. Except for
temperatures very close to the stripe disordering transition,
the logarithm of the period shows a linear trend, suggesting
that the temperature dependence comes mainly from the
energetic parameters in the exponent in Eq. (1). As we will
discuss shortly, due to smearing of the stripe boundary, the
period levels off at a nonzero value close to the disordering
transition.

As mentioned above, studies on the dipolar Ising lattice
are informative also for the behavior of adsorbate stripes
[21]. Recent studies show that very close to the disordering
transition, the stripe profile can be approximated by sinus-
oidals (keeping the lowest orders in a Fourier expansion)
[22]. The result is a quadratic dependence of the period on
temperature obtained by minimizing the free energy:

D=D{l+%l—%Y} )

where D, is the period at the disordering temperature, c is a
constant given as a combination of the interaction parame-
ters, and 7 is the disordering temperature. Despite being a
good approximation close to the disordering temperature,
it breaks down away from the transition due to the implicit
assumption that the width of the stripe boundary is com-
parable to its period. Indeed, Fig. 1 shows that at the lower
temperatures the stripe period is much larger than the
boundary width, and that the two phases (i.e., dark and
bright stripes) have unequal widths. Thus the lowest order
components of a Fourier expansion are no longer sufficient
to describe the stripe profile.

Instead, the temperature dependence can be obtained
from general scaling laws governing the parameters in
Eq. (1). For the dipolar Ising lattice, the changes in the
boundary free energy and boundary width have been iden-
tified as the determining factors [16]. The boundary free
energy was found to decay linearly with temperature due to
the increase in entropy [13,23]. The result is a scaling of
the exponent in the stripe period:

c: q< U
1o - ) 3
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&

where C7] is the temperature dependent boundary free
energy, and T? is the transition temperature for the Ising
model without the long-range dipolar or elastic interac-
tions. On the other hand, the boundary width scales as the
correlation length [16]. Using the critical exponent v = 1
for the 2D Ising model,

T\-1

where we define the unscaled boundary width as wy =
2mra. Combining Egs. (1), (3), and (4), we can write the
logarithm of the stripe period as

In(D) = %(1 — T19> - ln<1 — ng) +1In(wy) + 1. (5)

FIG. 1.

Monolayer Pd stripes on W(110) with increasing temperature. The stripe direction is along [110]. The condensed Pd islands

appear bright at the electron energy used (5.2 eV). The image size is I wm?. A 350 nm profile across the stripes is shown below each
image. Note that the rectangular profile of the sharp boundaries is broadened due to the resolution of the microscope. In all images,

monoatomic substrate steps with circular shapes can be recognized.
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The basic features in Fig. 2 can now be understood. The
first term on the right hand side of Eq. (5) dominates at the
lower temperatures giving the linear trend in In(D) vs T.
The second term has a mild temperature dependence away
from the transition, but becomes increasingly important
close to it. This corresponds to a broadening of the stripe
boundary, which slows down the variation in the period and
levels it off at the stripe disordering temperature.

The resulting fit to the experimentally determined stripe
period is shown as a solid line in Fig. 2. The fitting
parameters were found to be wy = 1.95 = 0.04 A, 70 =
1201.7 = 2.6 K and the energy ratio C,/C, = 39.8 = 0.8.
The scaling gives excellent agreement with the data
throughout the whole temperature range for which stripes
are observed. It should also be noted that near the disorder-
ing temperature, 7., the quadratic dependence in Eq. (2)
can be retrieved from the functional form used for the fit
(see Appendix).

The value of T? reveals an important effect. The scaling
laws in Egs. (3) and (4) were found from the 2D Ising
model. They do not take into account the long-range elastic
interactions, which counteract the short-range interactions
between Pd atoms and favor disorder, lowering the tran-
sition temperature from the pure Ising value, 77, to the
stripe disordering temperature, 7, = 1170 K. Moreover,
as predicted [24], we see that the decrease of the transition
temperature is given by the ratio of the long-range and
short-range energies:

In physical terms, the transition temperature is lower than

In(D) (period in nm)

1100 1120 1140

T (K)

1160

FIG. 2. Natural logarithm of the stripe period as a function of
temperature. The data points are shown as solid circles. The line
corresponds to the fitting function in Eq. (5).

the value expected from a diverging correlation length,
because the disorder sets in when the boundary roughness
(or the correlation length) becomes comparable to the
stripe period. The same phenomenon is observed in
finite-size Ising lattices, in which the disorder transition
takes place when the fluctuations reach the system size.
Such a reduction in the transition temperature was shown
to scale inversely with the finite size [23]. The period of Pd
stripes at the transition is approximately given by D, =
e’>wy(C,/C,) from Egs. (5) and (6), providing an analo-
gous relation between the period and the lowering of the
transition.

The actual condensate to lattice-gas phase transition,
which should take place at 7Y, can be observed in the
intensity of the Pd diffraction spots shown in the inset of
Fig. 3. In agreement with the discussion above, we observe
that the crystalline order of the Pd layer persists after the
stripe contrast vanishes at 7,.. A fit to the temperature
dependence of the diffraction intensity (see Fig. 3) gives
a condensate to lattice-gas transition at 70 = 1210 = 5 K,
only slightly higher than the value extracted from Eq. (5).
The intermediate phase, between T, and T?, does not have
the long-range stripe order; however, it consists of con-
densed islands buried in the lattice-gas phase as discussed
in [25].

The exponential decay of the Pd diffraction spot inten-
sity with temperature up to about 1170 K is much faster
than that expected for a physically realistic Debye-Waller
factor. It is rather due to the decrease of the number of

Pd spot intensity (arb.units)
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FIG. 3. The intensity of the Pd extra LEED spot (shown by the
arrow in the inset) as a function of temperature. Electron energy
is 35 eV. The solid line is a fitting function of the form
eE/KT(1 — T/T9)2B, where B = 1/8 is the critical exponent
for the order parameter in the 2D Ising model. E; is the energy
of sublimation from the condensate to the lattice-gas phase.
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atoms in the crystalline phase by sublimation into the
lattice gas. Consequently, the energy in the exponential,
E, = 0.88 eV, corresponds to the removal of Pd atoms
from the kink sites of the stripe boundaries. This translates
into a boundary energy of C; = 197 meV/A along [110].
The value of the boundary energy, along with C,/C, =
39.8, results in an elastic energy parameter C, =
5.0 meV/A. Using the bulk elastic constants for tungsten,
we obtain the surface stress change across the Pd step to be
A7l =~ 4.6 N/m (assuming an isotropic elastic response
for the tungsten substrate according to [26]). This is in very
good agreement with density-functional theory calcula-
tions, which suggest that the tungsten surface stress along
[001], 5.26 N/m [27], is reduced nearly to zero upon Pd
adsorption [28].

Finally, we note that no orientational melting of the
stripes is observed. With increasing temperature, contrast
between the condensate and gas stripes decreases mono-
tonically, until it disappears at T,.. However, the direction
of the pattern is preserved all the way up to 7, as shown in
Fig. 1.

In conclusion, we have shown that stress-induced stripes
of Pd on W(110) behave according to the scaling laws for
the 2D Ising model with increasing temperature. Using
low-energy electron diffraction and microscopy, we have
demonstrated that the condensate to lattice-gas transition
takes place at a slightly higher temperature than the dis-
ordering of the stripes. In analogy with the lowering of the
transition temperature in the finite-size Ising lattice, this
difference in the disordering temperature of the atomic and
mesoscopic scales is explained by the loss of stripe order
when the correlation length becomes comparable to the
stripe period.

We thank Natasa Stoji¢ for making available the results
of her surface stress calculation on Pd/W(110) before
publication.

APPENDIX—Equation (2) can be obtained by expand-
ing Eq. (5) near the stripe disordering temperature, 7... We
first rewrite the scaling expression for a temperature
slightly below T:

ewg
1 — T[;{QST

eCI/Cz(l—(T(.—éT/Tf?)).

D(T, — 8T) = (A1)

Using Eq. (6) we can expand both the denominator and the
exponent in powers of (C;/C,)(8T/T?). The result has the
same form as in Eq. (2):

D(T) = Do[l + ;(2)2(1 - TE)Z] +0(.)3 (A2

where Dy, is the period at 7., and T =T, — oT.
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