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The validity of the structure-property relationships governing the low-temperature deformation behav-

ior of many bcc metals was brought into question with recent ab initio density functional studies of

isolated screw dislocations in Mo and Ta. These relationships were semiclassical in nature, having grown

from atomistic investigations of the deformation properties of the group V and VI transition metals. We

find that the correct form for these structure-property relationships is fully quantum mechanical, involving

the coupling of electronic states with the strain field at the core of long a=2h111i screw dislocations.

DOI: 10.1103/PhysRevLett.101.085505 PACS numbers: 61.72.Lk, 71.15.�m

Single crystal bcc metals show remarkable variation in
their plastic anisotropy and glide properties. For example,
the anisotropy ratio of Ta is twice that of Mo, and under
antitwinning stress, Ta is characterized by anomalous glide
along f112g planes. This variability must be rooted in the
dislocations that mediate plastic behavior. In the case of
bcc metals, where the edge and mixed character disloca-
tions are mobile even in the elastic regime, it is the long
screw character a=2h111i dislocations that are activated
during plastic deformation. Hence, it is differences in the
structure of these dislocations that was suspected to be
responsible for the variations in plastic anisotropy and
glide response of the bcc metals [1,2].

Atomistic calculations designed to elucidate the core
structure of a=2h111i dislocations [1,3–5] showed differ-
ences between the core structures of Mo and Ta. While the
dislocation core of both metals was spread on three con-
jugate (110) planes, in Ta the spreading was symmetrical
about the dislocation line, and for Mo it was asymmetric.
Thus, the dislocation core of Ta was characterized by full
D3 symmetry andMo by an approximate threefold rotation
axis, (C3).

Beigi and Arias [6] were the first to question this as-
sumption. Using electronic structure density functional
theory (DFT) calculations to study closely spaced disloca-
tion dipole arrays, they found qualitative evidence of sym-
metric strain fields around a=2h111i screw dislocations in
Mo. More realistic and quantitative DFT studies [2,7,8]
employing a flexible boundary condition also showed both
Mo and Ta to be characterized by symmetric dislocation
cores. Further, the calculated anisotropy ratio agreed with
the limited experimental measurements, with a twinning-
antitwinning asymmetry ratio of 2 in Mo and 4 in Ta.

Despite the computational successes, the underlying
structure(s) mediating the deformation properties of bcc
metals remain elusive. Here, we show that the variations in
glide properties at temperatures where thermally activated

dislocation motion is negligible are due to differences in
the symmetry imposed coupling between electronic states
and applied strain. The selection rules governing this cou-
pling are mediated by the topology of the total charge
density at the cores of a=2h111i screw dislocations. It is
because Mo has one more valence electron than does Ta,
that their charge density topologies, and consequent prop-
erties, are also different. (Though the variations in plastic
anisotropy are also rooted in differences in electron count
and charge density topology, this topic will be saved for a
subsequent paper.)
The relationship between charge density topology and

mechanical properties can be understood from the
Hohenberg-Kohn theorem, which asserts that a system’s
ground-state properties are a consequence of its charge
density, a scalar field denoted as �ð ~rÞ [9]. Bader [10] noted
that the essence of a molecule’s structure must be con-
tained within the topology of �ð~rÞ. The topology of a scalar
field is given in terms of its critical points (CPs), which are
the zeros of the gradient of this field. There are four kinds
of CP in a three-dimensional space: a local minimum, a
local maximum and two kinds of saddle point. These CPs
are denoted by an index, which is the number of positive
curvatures minus the number of negative curvatures. For
example, a minimum CP has positive curvature in three
orthogonal directions; therefore it is called a (3, 3) CP. The
first number is simply the number of dimensions of the
space, and the second number is the net number of positive
curvatures. A maximum is denoted by (3, �3), since all
three curvatures are negative. A saddle point with two of
the three curvatures negative is denoted (3, �1), while the
other saddle point is a (3, 1) CP. For the purposes of this
paper, only the (3, �3) and (3, �1) CPs need further
consideration.
Through extensive studies of molecules and crystals,

Bader and Zou [11] and Bader [10] showed that it was
possible to correlate topological properties of the charge
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density with elements of molecular structure and bonding.
A maximum, a (3, �3) CP, is always found to coincide
with the atomic nucleus, and so is called an atom CP. A
bond path was defined to be the ridge of maximum charge
density connecting two nuclei such that the density along
this path is a maximum with respect to any neighboring
path. Bader showed that these ridges correlate with the
locations of chemical bonds, leading one to associate the
topologically unambiguous bond path with the sometimes
subjective chemical bond. The existence of a bond path is
guaranteed by the presence of a (3,�1) CP between nuclei.
As such, this critical point is often referred to as a bond CP.

With a rigorous description of a bond path as a topo-
logical link, it is now possible to identify the bonds be-
tween atoms at dislocation cores. Using the charge
densities of Reference [5], the bulk topologies of both Ta
and Mo were found to be those typical of bcc metals, with
eight bond paths to first neighbors (there are no second or
higher neighbor bond paths). However, the topological
structures of the two equilibrium dislocation cores are
distinct (see Fig. 1). Of importance is the recognition that
bond paths cross the dislocation core of Mo but not Ta.
Thus, while the strain fields of the screw dislocations in Mo
and Ta are congruent, the connections between atoms are
different. The atoms at the dislocation core of Ta are
deficient in two bonds, with only six, while Mo has the
full complement of eight, as in the bulk.

Consider now the atoms labeled 1=6, 3=6, and 5=6 in
Fig. 1. They are characterized by four bound atoms on an
equatorial plane, with the remaining four near neighbor
atoms situated on two perpendicular axial planes (see
Fig. 2). For the sake of clarity, we define a reference frame
with an origin coincident with the 5=6 atom. The z axis lies
along a h110i direction and passes through the center of the
dislocation. This axis is normal to the (110) equatorial
plane containing the x and y axes of the local reference
frame. One may decompose the charge density into its
contributions from all the atomic orbitals and find that
with respect to the reference frame, the dxy orbital on the

central metal atom (Mo or Ta at the 5=6 position) contrib-
utes density to the bond paths in the equatorial plane. In the
case of Mo, the dxz and dyz orbitals contribute density to

the bond paths above and below this plane. While for Ta,
without bond paths above the plane, there is almost no
contribution to the total charge density from the dxz orbital
of the central metal atom.
In Ta, symmetry breaking provides the driving force for

occupying the dyz at the expense of the dxz. For Mo, the

symmetry of the charge density about the 5=6 atom is
nearly D2d—by virtue of an improper fourfold rotation
about the z axis (see caption Fig. 2). Under this symmetry,
the dxz and dyz orbitals will be nearly degenerate. The

projected density of states for the Mo dislocation core
confirms this fact, with a nearly full d band derived from
the dxz and dyz orbitals of the 1=6, 3=6, and 5=6 type atoms.

In the case of Ta, this band would be half full, but is split
into an occupied and unoccupied portion. The disappear-
ance of the bond points above the plane lowers the sym-
metry to nearlyC2v and splits the band. The key here is that
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FIG. 1. A projection onto the ð111Þ plane of stress free Mo (A)
and Ta (B) cores. Solid spheres give atom positions and open
spheres are the locations of bond critical points. Bond paths are
shown with connecting lines. The core regions are shaded with
triangles. Bonds paths are present across the Mo core, but absent
in Ta. Outside the core region the topologies of the two metals
are identical. The insert (top) shows the fractional displacement
of the atoms in the z direction (in and out of the page) for the
atoms immediately adjacent to the core. Any full circuit around
the dislocation results in a translation along z equal to one
Burgers vector.
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FIG. 2. Structure around Mo (A) and Ta (B) core atoms
corresponding to those labeled 1=6, 3=6, and 5=6 in Fig. 1.
For Mo, the symmetry of the charge density about the central
atom is nearly D2d—a rotation by 90� about the z axis followed
by a reflection in the xy plane will carry the bond critical points
above the plane into those below the plane. Under this symmetry,
the dxz orbitals, which participate in the bonding above the xy
plane, are nearly degenerate with the dyz atomic orbitals, which

form the two bonds below the plane. In Ta, the absence of bond
critical points above the plane reduces the symmetry of the
charge density to C2v, lifting the degeneracy between the dxz
and dyz atomic orbitals.
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in Mo the dxy, dxz, and dyz orbitals are split into two

groups, a degenerate pair (dxz and dyz) and an orbital

singlet (dxy), while in Ta they are split into three non-

degenerate groups.
Consider now the charge redistribution that must accom-

pany dislocation motion. In the bulk, where the local
coordination is cubic, the dxy, dxz, and dyz atomic orbitals

will be degenerate. As the dislocation moves, and the
atoms at the core rearrange to form bulk, degeneracy is
achieved through the flow of electrons between them. In
turn, this charge redistribution is permitted through the
coupling of the charge by the perturbation acting on the
dislocation, in this case, the applied strain. The quantum
mechanical laws governing this coupling can be reduced to
their principal factors by assuming the applied strain rate is
slow, with the atoms of the dislocation core moving on an
adiabatic potential surface. Then, we can write the strain
perturbation as a sum of two static parts: a term that
depends only on the strain and one that depends on its
spatial rate of change, i.e.,

"ð ~rþ d~rÞ � "ð~rÞ þ d~r � r"ð~rÞ; (1)

where " is the strain. The second term on the right is simply
the rate of change of the strain in the direction d~r. This
term will be zero in a material with uniform elastic prop-
erties. In a material with varying elastic properties, how-
ever, it will change most rapidly along the directions in
which bonds are being made and broken due to the strain at
r—the first term on the right. Thus, each of these terms can
couple orbitals and facilitate charge redistribution; their
importance in this process, however, will be determined by
their relative magnitudes.

The results summarized in Ref. [5] confirm that for both
Ta and Mo dislocations moving under a twinning stress the
magnitudes of the two terms in Eq. (1) are comparable, for
as the strain is applied, new bonds form and the dislocation
moves at a small Peierls strain. On the other hand, in the
antitwinning sense, bond breaking and making occurs late
in the reaction coordinate (large Peierls strain) and only
after significant atomic rearrangement. Hence, for anti-
twinning, the initial response of the dislocations is domi-
nated by the applied strain. And, whereas the quantum
mechanical constraints imposed on the charge redistribu-
tion are difficult to predict when d~r � r"ð ~rÞ is large, when
it is small or vanishes (antitwinning stresses), we can call
upon the principles of symmetry to predict the atomic
motions that couple orbitals and permit charge flow. (See
the supporting material at end.)

Beginning with Mo, charge flow between the dxz-dyz
pair and the dxy orbital is only permitted when atoms move

in response to a shear stress in the (110) plane. On the other
hand, in Ta, with three singly degenerate orbitals, there are
two coupling strains. The empty dxz orbital is coupled to
the occupied dyz orbital by shear strains lying in a plane

perpendicular to the (110) plane. Shear strains in the (110)

plane couple the remaining orbitals—dxy to dxz and dxy to

dyz. The constraints imposed by these coupling rules,

known formally as selection rules, are seen as Ta and Mo
deform under an antitwinning stress.
As a rule, dislocations in metals move along close-

packed planes. Thus, in bcc metals, dislocations are ex-
pected to move along f110g planes, which is the case for
Mo. For example, when a pure shear stress is applied in the
h111i antitwinning sense, dislocations in Mo move as
expected (along the (110) plane of maximum resolved
shear stress) [5,7,12,13]. In Ta, however, the dislocation
responds to this shear stress on the (112) plane [5,7,14,15].
Only after significant charge redistribution can bonds begin
to form, at which point the dislocation propagates in re-
sponse to the gradient terms of Eq. (1). Thus, the driving
force for the motion is the formation of bonds using
tantalum’s empty dxz orbital. The charge to form these
bonds comes from electrons in the Ta dyz orbital. This

charge flow is not allowed if the dislocation is confined
to the (110) plane but is possible by coupling orbitals
through the strain field in the (112) plane. The observed
motion of dislocations in Ta under antitwinning stress is
consistent with the symmetry imposed selection rules.
Ultimately, these differences stem from the fact that Ta
has one fewer valence electron than does Mo.
Because the differences between Ta and Mo can be

traced to electron count, we speculate that Nb and W
will have core structures similar to Ta and Mo, respec-
tively. However, the degree of s� d hybridization changes
within a Group and could result in subtle differences in
dislocation core bonding within a Group. Hence, a defini-
tive test of this speculation must await more calculations.
With an electronic mechanism for dislocation motion in

hand, the effects of dilute substitutional impurities in bcc
metals are predictable. Substitutional alloying of elements
to the left of the Group V metals will deplete the d band,
yielding an alloy with properties more like those of Ta.
Conversely, those to the right will further fill the d band,
producing properties more like Mo, a trend recovered
using DFT methods [16]. This result is entirely reasonable
based on purely empirical arguments.
Combining DFT with the topological model of molecu-

lar bonding, we were able to uncover structure-property
relationships that have eluded others. The procedure used
here should be equally applicable to problems of fracture
and deformation where empirical findings do not provide
guidance. For example, the Mott and Nabarro [17] theory
of low-temperature solute hardening requires as a parame-
ter the breakaway energy for a dislocation pinned by a
solute atom—a parameter that is difficult to measure. As
we have argued, this energy will be governed through the
quantum mechanical interactions between the dislocation
core and the solute atom and thus cannot be calculated by
traditional means. However, once determined with quan-
tum methods, the value can be used as a parameter within
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the Mott-Nabarro model to give guidance as to the con-
centration dependence of solutes on hardening or soften-
ing. The future is one where integrated classical and
quantum mechanical models will be necessary to ration-
alize and predict the properties of materials, and the ap-
proach presented here represents a step toward achieving
this integration.

Supporting material.—With respect to the D2d point
group, the dxz and dyz atomic orbitals transform as the

doubly degenerate E representation, while the dxy orbital

transforms as the irreducible representation B2. If we take
�v to be the irreducible representation of the strains that
couple these two, then the fully symmetric representation,
A1, must be contained in the direct product of E� �v �
B2. From which one may show that �v transforms as E,
which possess the same symmetry as shear strains in the
(110) plane. With respect to the C2v point group, dyz
reduces as B2, dxz as B1 and dxy as A2. Knowing that B2 �
B1 � A2 ¼ A1, it can be shown that: dxz is coupled to dyz
by an A2 strain (shear couple applied in a plane normal to
the z axis), dxy is coupled to dyz by a B1 strain (shear

normal to the y axis), and dxy is coupled to dxz by a B2

strain (shear couple normal to the y axis). B1 and B2 form a
symmetry basis for the full set of shear strains in the (110)
plane of Fig. 2.
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